When Hillclimbers Beat Genetic Algorithms in Multimodal Optimization

Allbwn ymchwil: Pennod mewn Llyfr/Adroddiad/Trafodion CynhadleddCyfraniad i Gynhadleddadolygiad gan gymheiriaid

Fersiynau electronig

Dolenni

Dangosydd eitem ddigidol (DOI)

  • Fernando G. Lobo
    Universidade do Algarve, Faro
  • Mosab Bazargani
    Universidade do Algarve, Faro
We show that multistart next ascent hillclimbing compares favourably to crowding-based genetic algorithms when solving instances of the multimodal problem generator. We conjecture that it is unlikely that any practical evolutionary algorithm is capable of solving this type of problem instances faster than the multistart hillclimbing strategy.

Allweddeiriau

Iaith wreiddiolSaesneg
TeitlProceedings of the Companion Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation
Man cyhoeddiNew York, NY, USA
CyhoeddwrAssociation for Computing Machinery
Tudalennau1421–1422
ISBN (Argraffiad)9781450334884
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 2015
Cyhoeddwyd yn allanolIe

Cyfres gyhoeddiadau

EnwGECCO Companion '15
CyhoeddwrAssociation for Computing Machinery
Gweld graff cysylltiadau