Where’s Wally? A machine learning approach

Allbwn ymchwil: Pennod mewn Llyfr/Adroddiad/Trafodion CynhadleddCyfraniad i Gynhadleddadolygiad gan gymheiriaid

Fersiynau electronig

Dogfennau

  • CGVC__Where_s_Wally(1)

    Llawysgrif awdur wedi’i dderbyn, 2.27 MB, dogfen-PDF

Dangosydd eitem ddigidol (DOI)

Object detection has been implemented in all sorts of real-life scenarios such as facial recognition, traffic monitoring and medical imaging but the research that has gone into object detection in drawings and cartoons is not nearly as extensive. The Where's Wally puzzle books give a good opportunity to implement some of these real-life methods into the fictional world. The Wally detection framework proposed is composed of two stages: i) a Haar-cascade classifier based on the Viola-Jones framework, which detects possible candidates from a scenario from the Where's Wally books, and ii) a lightweight convolutional neural network (CNN) that re-labels the objects detected by the cascade classifier. The cascade classifier was trained on 85 positive images and 172 negative images. It was then applied to 12 test images, which produced over 400 false positives. To increase the accuracy of the models, hard negative mining was implemented. The framework achieved a recall score of 84.61% and an F1 score of 78.54%. Improvements could be made to the training data or the CNN to further increase these scores.
Iaith wreiddiolSaesneg
TeitlComputer Graphics & Visual Computing (CGVC) 2021
GolygyddionK. Xu, M. Turner
CyhoeddwrThe Eurographics Association
Tudalennau28-31
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - Medi 2021
DigwyddiadEG UK Computer Graphics & Visual Computing (CGVC): EGUK CGVC 2021 - Lincoln, Y Deyrnas Unedig
Hyd: 8 Medi 202110 Medi 2021
Rhif y gynhadledd: 39
https://cgvc.org.uk/CGVC2021/

Cynhadledd

CynhadleddEG UK Computer Graphics & Visual Computing (CGVC)
Teitl crynoCGVC 2021
Gwlad/TiriogaethY Deyrnas Unedig
DinasLincoln
Cyfnod8/09/2110/09/21
Cyfeiriad rhyngrwyd

Anrhydeddau (1)

Gweld y cyfan

Gweld graff cysylltiadau