Dr David Pryce

Lecturer in Biomedical Sciences (Immunology)

Contact info

Brambell Buidling
Room D11

NWCR institute
School of Medical Sciences
Brambell Building
Deiniol Road
Bangor
Gwynedd
LL57 2UW
 
Office +44 (0)1248 382363
Lab +44 (0)1248 382542

Overview

I have always had an interest in science, particulariy the life sciences and especially the fascinating world of immunology and the human immune system.

At the age of 18 I obtained a place at Unviersity College London, studying Genetics and Microbiology. Unfortunately, I was unable to complete my studies at UCL, having to return home, to help run the family busines. At the age of 33, I was once again able to return to science, undertaking a BSc Hons degree in Biomolecular Sciences, at Bangor. I have been at Bangor ever since. I completed my PhD in molecular genetics, followed by two externally funded postdoctoral research fellow positions. Finally, in 2010, I acheived a permenant Lecturer position at Bangor, in Biomedical Sciences (immunology).

My research and research led teaching focuses on human molecular immunology and molecular genetics specialising on the roles of the human immune system in autoimmune disease and cancer. I am the organiser and primary deliverer of a number of Undergradute and postgraduate modules, and superviser of research projects associated with the School of Medical Sciences PhD, MRes, MSc and Masters degree programs.

Teaching and Supervision

Teaching and Scholarship Roles

  • Director of Postgraduate Taught Studies (SMS)
  • Director of Internationalisation (SMS)
  • Degree Course Director MSc in Medical Molecular Biology with Genetics
  • Academic Supervisor/Mentor Post Graduate Certificate in Higher Education (PGCertHE) (SMS)
  • PhD examiner, Internal and external

 Module organiser and major deliverer

Teaching and Scholarship Awards

  • Bangor University Teaching Fellow (2012)
  • Recognition of contribution to teaching Excellence CELT Award (2016)

External Teaching and Scholarship

Research

Research overview

Utilising a process termed ‘Immunosurveillance’, our immune system plays a siginficiant role in the battle against cancer. Speciaiised immune cells help identify and destroy Cancerous cells, limit their proliferation and inhibit tumour growth.

Unfortunately however, tumours can evolve mechanisms to avoid and ‘escape’ this immune attack, or indeed can even reprogram immune cells to aid tumour survival and expansion.

Excitingly though, cutting edge research into the agents and mechanisms that regulate our immune system has allowed the development of new cancer-immunotherapies, which can enhance and/or reinvigorate our immune system to once again attack cancerous cells and tumours.

Intriguingly, a number of ‘systemic autoimmune diseases’ - conditions where our immune system mistakenly attacks and damages normal, healthy tissue - are linked to either increased or decreased prevalence of certain Cancers. This suggests key drivers of ‘systemic autoimmunity’ may be involved in either suppressing or enhancing the destruction of certain Cancers and that the ability to identify and regulate key 'systemic auto-antigens' could reveal potent weapons in the fight against Cancer.

The research in my group primarily focuses on investigating the roles of autoantigens, in early stage and advanced cancers, with the aim of identifying novel cancer biomarkers and potential targets for targeted anti-Cancer Immunotherapies.

Grant Awards and Projects

Current Research Projects 

MRes: Characterisation of the potential of the Ro60 autoimmune antigen as a target for anti-cancer immunotherapy (KESS II funded project BUK2175) 
MRes: Characterisation of the potential of the Ro60 autoimmune antigen as a cancer Biomarker (KESS II funded project BUK2178)

MRes: Characterisation of Ro60 splice variants, for potential in targeted treatment of Chronic Myeloid Leukaemia

MRes: Design, validation and utilisation of RT-PCR and qPCR assays for characterisation and quantification of Ro60 autoantigen splice variants in human tissues
MBiol masters: Investigation of the use of anti-sense RNA technologies for specific regulation of expression of the human Ro60 auto-antigen

MSc: Development of targeted Antisense Oligonucleotide agents for enhanced treatment of Chronic Myeloid Leukaemia

MSc: Cloning of human Angiogenin and characterisaion of potential roles of in chronic myeloid leukamia
MSc: Characterisation of ADAR directed, site-specific RNA editing, in leukaemia cell lines

Background to Projects

Chronic myeloid leukaemia (CML) is a form of blood cancer. In a 2013 survey of UK cancers CML cases comprised 8% of all leukaemias and 0.2% of all new cancer cases. Moreover, UK trends in CML cases mirror comparative global trends, with steady annual increases in both disease incidence and prevalence. 

The discovery of the tyrosine kinase inhibitors (TKIs) - highly specific small molecule drugs which inhibit CML progression - has profoundly reduced CML-dependent mortality. However, several issues still remain with the effectiveness of 'pure' TKI-based therapies, mainly; they are rarely curative, they require long term treatment stratergies, in which time patients may experience severe side effects and co-morbities, but treatment withdrawal can lead to disease relapse, and long-term treatment requires a considerable financial commitment.

Research into enhancing current and developing alternative CML therapy options is therefore a vital area of research to sustain current long-term CML treatment strategies and to reach the ulimate goal of finding a 'permanant cure' for CML.

Contact Info

Brambell Buidling
Room D11

NWCR institute
School of Medical Sciences
Brambell Building
Deiniol Road
Bangor
Gwynedd
LL57 2UW
 
Office +44 (0)1248 382363
Lab +44 (0)1248 382542

Research areas and keywords

Keywords

  • RZ Other systems of medicine - leukaemia
  • Q Science (General)

Education / academic qualifications

View graph of relations