Electronic versions

Documents

DOI

  • Santiago Carbo-Valverde
  • Pedro Cuadros Solas
    University of Granada
  • Francisco Rodríguez-Fernández
    University of Granada
Understanding the digital jump of bank customers is key to design strategies to bring on board and keep online users, as well as to explain the increasing competition from new providers of financial services (such as BigTech and FinTech). This paper employs a machine learning approach to examine the digitalization process of bank customers using a comprehensive consumer finance survey. By employing a set of algorithms (random forests, conditional inference trees and causal forests) this paper identities the features predicting bank customers’ digitalization process, illustrates the sequence of consumers’ decision-making actions and explores the existence of causal relationships in the digitalization process. Random forests are found to provide the highest performance–they accurately predict 88.41% of bank customers’ online banking adoption and usage decisions. We find that the adoption of digital banking services begins with information-based services (e.g., checking account balance), conditional on the awareness of the range of online services by customers, and then is followed by transactional services (e.g., online/mobile money transfer). The diversification of the use of online channels is explained by the consciousness about the range of services available and the safety perception. A certain degree of complementarity between bank and non-bank digital channels is also found. The treatment effect estimations of the causal forest algorithms confirm causality of the identified explanatory factors. These results suggest that banks should address the digital transformation of their customers by segmenting them according to their revealed preferences and offering them personalized digital services. Additionally, policymakers should promote financial digitalization, designing policies oriented towards making consumers aware of the range of online services available.

Keywords

  • Technology adoption, Banks, Machine learning, Tandom forest, Casual forest
Original languageEnglish
Article numbere0240362
JournalPLoS ONE
Volume15
Issue number10
DOIs
Publication statusPublished - 28 Oct 2020

Total downloads

No data available
View graph of relations