Experiments were carried out to test the amenabilities of mineral deposits that contained cobalt deported in arseno-sulfide (cobaltite) and arsenide (skutterudite) minerals, to oxidative bioleaching at mesophilic temperatures and low pH. An ore sample from the Iron Mask deposit (Canada) and a mineral concentrate from a working mine (Bou Azzer, Morocco) were thoroughly characterised, both prior to and following bio-processing. A “top down” approach, using microbial consortia including (initially) 13 species of mineral-degrading acidophiles was used to bioleach the ore and concentrate in shake flasks and bioreactors. Cobalt was successfully liberated from both materials tested (up to 93% from the ore, and 49% from the concentrate), though the chemistries of the leach liquors were very different, with redox potentials being>200 mV lower, and concentrations of soluble arsenic about 7-fold greater, with the concentrate. Addition of pyrite to the arsenide concentrate was found to promote the biomineralisation of scorodite (ferric arsenate), which was detected by both XRD and SEM-EDX, but was not found in bioleached residues of the arseno-sulfide ore. A model was proposed wherein pyrite had three critical roles in facilitating the genesis of scorodite: (i) providing the catalytic surface to promote the oxidation of As (III) to As (V); (ii) acting as a putative “seed” for scorodite crystallisation; (iii) being a secondary source of iron, since the molar ratios of iron:arsenic in the concentrate itself (0.19:1) was well below that required for effective removal of soluble arsenic as scorodite (1:1). This work provided proof of concept that cobalt arseno-sulfide and arsenide ores and concentrates are amenable to bio-processing, and also that it is possible to induce concurrent solubilisation of arsenic from primary minerals and immobilisation in a secondary mineral, scorodite.

Keywords

  • Arsenic, Bioleaching, Cobalt, Cobaltite, Scorodite, Skutterudite
Original languageEnglish
Article number 105395
JournalHydrometallurgy
Volume195
Early online date19 Jun 2020
DOIs
Publication statusPublished - 1 Aug 2020
View graph of relations