Electronic versions

DOI

  • Tyler A Hallman
    Swiss Ornithological Institute
  • W Douglas Robinson
    Oregon State University
  • Jenna R Curtis
    Cornell Lab of Ornithology
  • Edward R Alverson
    Lane County Parks, USA
Globally, anthropogenic land-cover change has been dramatic over the last few centuries and is frequently invoked as a major cause of wildlife population declines. Baseline data currently used to assess population trends, however, began well after major changes to the landscape. In the United States and Canada, breeding bird population trends are assessed by the North American Breeding Bird Survey, which began in the 1960s. Estimates of distribution and abundance prior to major habitat alteration would add historical perspective to contemporary trends and allow for historically based conservation targets. We used a hindcasting framework to estimate change in distribution and abundance of 7 bird species in the Willamette Valley, Oregon (United States). After reconciling classification schemes of current and 1850s reconstructed land cover, we used multiscale species distribution models and hierarchical distance sampling models to predict spatially explicit densities in the modern and historical landscapes. We estimated that since the 1850s, White-breasted Nuthatch (Sitta carolinensis) and Western Meadowlark (Sturnella neglecta) populations, 2 species sensitive to fragmentation of oak woodlands and grasslands, declined by 93% and 97%, respectively. Five other species we estimated nearly stable or increasing populations, despite steep regional declines since the 1960s. Based on these estimates, we developed historically based conservation targets for amount of habitat, population, and density for each species. Hindcasted reconstructions provide historical perspective for assessing contemporary trends and allow for historically based conservation targets that can inform current management.
Original languageEnglish
Pages (from-to)1256-1267
Number of pages12
JournalConservation Biology
Volume35
Issue number4
Early online date27 Jul 2021
DOIs
Publication statusPublished - 3 Aug 2021
Externally publishedYes
View graph of relations