Carbon and sulphur tracing from soil organic sulphur in plants and soil microorganisms

Research output: Contribution to journalArticlepeer-review

Electronic versions

DOI

In soils, cysteine and methionine represent the predominant constituents of the low molecular weight organic S, but their role in plant nutrition and soil S cycling is unclear. Cysteine and methionine uptake by pot-cultivated wheat and oilseed rape and their cycling were evaluated using 14C and 35S labelling. About 0.16%–0.30% of 14C from cysteine and methionine was absorbed by the plants after 6 h, indicating that the plants could utilise organic S, with oilseed rape showing higher ability than wheat to take up intact organic S and its derivative inorganic S. Plants utilised organic S with much lower efficiency than inorganic S because most organic S was decomposed by microorganisms. Nitrogen (N) addition enhanced plant S uptake, as high N uptake stimulates S immobilization. About 28%–33% and 67–71% of 14C from cysteine and methionine, respectively, were retained in the microbial biomass (MB), a much higher proportion of 14C from cysteine was released as 14CO2 from the soil than from methionine. Further, 16%–25% and 61%–72% of 35S from cysteine and methionine, respectively, were retained in the MB, and 35%–42% and 5%–9% were released from it as SO42−. Microbial carbon (C) and S use efficiency for cysteine was lower than for methionine, whereas plants utilised higher amounts of cysteine-derived S as sulphate. The higher microbial utilisation rate of methionine by soil microorganisms, compared with cysteine, may reduce the bioavailability of this compound in the soil solution, and, consequently, its uptake by plants.

Keywords

  • Sulphur cycling, Plant sulphur deficiency, Isotopic labelling, Soil microorganism, Cysteine and methionine
Original languageEnglish
Article number107971
JournalSoil Biology and Biochemistry
Volume150
Early online date30 Aug 2020
DOIs
Publication statusPublished - 1 Nov 2020
View graph of relations