Causal Evidence for Expression of Perceptual Expectations in Category-Selective Extrastriate Regions
Research output: Contribution to journal › Article › peer-review
Standard Standard
In: Current Biology, Vol. 29, No. 15, 05.08.2019, p. 2496-2500.
Research output: Contribution to journal › Article › peer-review
HarvardHarvard
APA
CBE
MLA
VancouverVancouver
Author
RIS
TY - JOUR
T1 - Causal Evidence for Expression of Perceptual Expectations in Category-Selective Extrastriate Regions
AU - Gandolfo, Marco
AU - Downing, Paul
PY - 2019/8/5
Y1 - 2019/8/5
N2 - Expectations about a visual event shape the way it is perceived [1, 2, 3, 4]. For example, expectations induced by valid cues signaling aspects of a visual target can improve judgments about that target, relative to invalid cues [5, 6]. Such expectation effects are thought to arise via pre-activation of a template in neural populations that represent the target [7, 8] in early sensory areas [9] or in higher-level regions. For example, category cues (“face” or “house”) modulate pre-target fMRI activity in associated category-selective brain regions [10, 11]. Further, a relationship is sometimes found between the strength of template activity and success in perceptual tasks on the target [12, 13, 14]. However, causal evidence linking pre-target activity with expectation effects is lacking. Here we provide such evidence, using fMRI-guided online transcranial magnetic stimulation (TMS). In two experiments, human volunteers made binary judgments about images of either a body or a scene. Before each target image, a verbal cue validly or invalidly indicated a property of the image, thus creating perceptual expectations about it. To disrupt these expectations, we stimulated category-selective visual brain regions (extrastriate body area, EBA; occipital place area, OPA) during the presentation of the cue. Stimulation ended before the target images appeared. We found a double dissociation: TMS to EBA during the cue period removed validity effects only in the body task, whereas stimulating OPA removed validity effects only in the scene task. Perceptual expectations are expressed by the selective activation of relevant populations within brain regions that encode the target.
AB - Expectations about a visual event shape the way it is perceived [1, 2, 3, 4]. For example, expectations induced by valid cues signaling aspects of a visual target can improve judgments about that target, relative to invalid cues [5, 6]. Such expectation effects are thought to arise via pre-activation of a template in neural populations that represent the target [7, 8] in early sensory areas [9] or in higher-level regions. For example, category cues (“face” or “house”) modulate pre-target fMRI activity in associated category-selective brain regions [10, 11]. Further, a relationship is sometimes found between the strength of template activity and success in perceptual tasks on the target [12, 13, 14]. However, causal evidence linking pre-target activity with expectation effects is lacking. Here we provide such evidence, using fMRI-guided online transcranial magnetic stimulation (TMS). In two experiments, human volunteers made binary judgments about images of either a body or a scene. Before each target image, a verbal cue validly or invalidly indicated a property of the image, thus creating perceptual expectations about it. To disrupt these expectations, we stimulated category-selective visual brain regions (extrastriate body area, EBA; occipital place area, OPA) during the presentation of the cue. Stimulation ended before the target images appeared. We found a double dissociation: TMS to EBA during the cue period removed validity effects only in the body task, whereas stimulating OPA removed validity effects only in the scene task. Perceptual expectations are expressed by the selective activation of relevant populations within brain regions that encode the target.
KW - perceptual expectations
KW - pre-stimulus brain activity
KW - category-selective brain regions
KW - transcranial magnetic stimulation
KW - extrastriate body area
KW - occipital place area
U2 - 10.1016/j.cub.2019.06.024
DO - 10.1016/j.cub.2019.06.024
M3 - Article
VL - 29
SP - 2496
EP - 2500
JO - Current Biology
JF - Current Biology
SN - 0960-9822
IS - 15
ER -