Central processing of leg proprioception in Drosophila
Research output: Contribution to journal › Article › peer-review
Electronic versions
Documents
- 2020 Drosophila
Final published version, 13.3 MB, PDF document
Licence: CC BY Show licence
DOI
Proprioception, the sense of self-movement and position, is mediated by mechanosensory neurons that detect diverse features of body kinematics. Although proprioceptive feedback is crucial for accurate motor control, little is known about how downstream circuits transform limb sensory information to guide motor output. Here we investigate neural circuits in Drosophila that process proprioceptive information from the fly leg. We identify three cell types from distinct developmental lineages that are positioned to receive input from proprioceptor subtypes encoding tibia position, movement, and vibration. 13Bα neurons encode femur-tibia joint angle and mediate postural changes in tibia position. 9Aα neurons also drive changes in leg posture, but encode a combination of directional movement, high frequency vibration, and joint angle. Activating 10Bα neurons, which encode tibia vibration at specific joint angles, elicits pausing in walking flies. Altogether, our results reveal that central circuits integrate information across proprioceptor subtypes to construct complex sensorimotor representations that mediate diverse behaviors, including reflexive control of limb posture and detection of leg vibration.
Original language | English |
---|---|
Article number | 60299 |
Number of pages | 32 |
Journal | Elife |
Volume | 9 |
Early online date | 2 Dec 2020 |
DOIs | |
Publication status | Published - 21 Dec 2020 |