Clay and biochar amendments decreased inorganic but not dissolved organic nitrogen leaching in soil
Research output: Contribution to journal › Article › peer-review
Standard Standard
In: Soil & Tillage Research, Vol. 50, No. 3, 25.05.2012, p. 216-221.
Research output: Contribution to journal › Article › peer-review
HarvardHarvard
APA
CBE
MLA
VancouverVancouver
Author
RIS
TY - JOUR
T1 - Clay and biochar amendments decreased inorganic but not dissolved organic nitrogen leaching in soil
AU - Dempster, Daniel N.
AU - Jones, Davey L.
AU - Murphy, Daniel V.
PY - 2012/5/25
Y1 - 2012/5/25
N2 - Nitrogen (N) leaching from coarse-textured soils frequently leads to productivity losses and negative environmental consequences. Historically, clay amendment has been used on coarse-textured soils to decrease water repellence and nutrient leaching. More recently, biochar has been proposed as an alternative soil amendment to decrease N leaching while simultaneously storing carbon. As biochar has a greater nutrient-retention capacity, we hypothesised that biochar derived from Eucalyptus marginata would be a more effective amendment than clay at minimising N leaching. The soil used was a coarse-textured agricultural sand with the following treatments: (1) biochar incorporated homogenously into the 0–10 cm soil layer, (2) clay incorporated similarly, (3) biochar added as a layer at 10 cm depth, (4) clay added similarly, or (5) a control. Amendments were added at 25 t/ha and watered periodically over 21 days and watered with the equivalent to 30 mm. Clay and biochar amendments significantly decreased cumulative NH4+ leaching by ~20% and NO3– leaching by 25%. Biochar decreased NO3– leaching significantly more than clay, possibly due to decreased nitrification. Dissolved organic N leaching was not influenced by any treatment. Leaching of N was unaffected by amendment application method. We conclude that to decrease N leaching, land managers should apply the most readily available of the amendments in the most convenient manner.
AB - Nitrogen (N) leaching from coarse-textured soils frequently leads to productivity losses and negative environmental consequences. Historically, clay amendment has been used on coarse-textured soils to decrease water repellence and nutrient leaching. More recently, biochar has been proposed as an alternative soil amendment to decrease N leaching while simultaneously storing carbon. As biochar has a greater nutrient-retention capacity, we hypothesised that biochar derived from Eucalyptus marginata would be a more effective amendment than clay at minimising N leaching. The soil used was a coarse-textured agricultural sand with the following treatments: (1) biochar incorporated homogenously into the 0–10 cm soil layer, (2) clay incorporated similarly, (3) biochar added as a layer at 10 cm depth, (4) clay added similarly, or (5) a control. Amendments were added at 25 t/ha and watered periodically over 21 days and watered with the equivalent to 30 mm. Clay and biochar amendments significantly decreased cumulative NH4+ leaching by ~20% and NO3– leaching by 25%. Biochar decreased NO3– leaching significantly more than clay, possibly due to decreased nitrification. Dissolved organic N leaching was not influenced by any treatment. Leaching of N was unaffected by amendment application method. We conclude that to decrease N leaching, land managers should apply the most readily available of the amendments in the most convenient manner.
KW - black carbon
KW - charcoal
KW - dissolved organic nitrogen
KW - DON
KW - mineralisation
U2 - 10.1071/SR11316
DO - 10.1071/SR11316
M3 - Article
VL - 50
SP - 216
EP - 221
JO - Soil & Tillage Research
JF - Soil & Tillage Research
SN - 1838-675X
IS - 3
ER -