Convergent evolution of toxin resistance in animals
Research output: Contribution to journal › Article › peer-review
Electronic versions
Documents
- 2022_Thiel_Convergent_evolution_venom_resistance_BiolRev
Final published version, 4.38 MB, PDF document
Licence: CC BY-NC Show licence
DOI
Convergence is the phenomenon whereby similar phenotypes evolve independently in different lineages. One example is resistance to toxins in animals. Toxins have evolved many times throughout the tree of life. They disrupt molecular and physiological pathways in target species, thereby incapacitating prey or deterring a predator. In response, molecular resistance has evolved in many species exposed to toxins to counteract their harmful effects. Here, we review current knowledge on the convergence of toxin resistance using examples from a wide range of toxin families. We explore the evolutionary processes and molecular adaptations driving toxin resistance. However, resistance adaptations may carry a fitness cost if they disrupt the normal physiology of the resistant animal. Therefore, there is a trade-off between main- taining a functional molecular target and reducing toxin susceptibility. There are relatively few solutions that satisfy this trade-off. As a result, we see a small set of molecular adaptations appearing repeatedly in diverse animal lineages, a phe- nomenon that is consistent with models of deterministic evolution. Convergence may also explain what has been called ‘autoresistance’. This is often thought to have evolved for self-protection, but we argue instead that it may be a conse- quence of poisonous animals feeding on toxic prey. Toxin resistance provides a unique and compelling model system for studying the interplay between trophic interactions, selection pressures and the molecular mechanisms underlying evolutionary novelties.
Keywords
- convergent evolution, toxin resistance, molecular adaptation, functional constraint, deterministic evolution, co-evolutionary arms races
Original language | English |
---|---|
Pages (from-to) | 1823-1843 |
Number of pages | 21 |
Journal | Biological Reviews |
Volume | 97 |
Issue number | 5 |
Early online date | 17 May 2022 |
DOIs | |
Publication status | Published - Oct 2022 |
Total downloads
No data available