Electronic versions

Documents

DOI

Sulphate-reducing bacteria (SRB) represent a key biological component of the global sulphur (S) cycle and are common in soils, where they reduce SO42− to H2S during the anaerobic degradation of soil organic matter. The factors that regulate their distribution in soil, however, remain poorly understood. We sought to determine the ecological patterns of SRB richness within a nationwide 16S metabarcoding dataset. Across 436 sites belonging to seven contrasting temperate land uses (e.g., arable, grasslands, woodlands, heathland and bog), SRB richness was relatively low across land uses but greatest in grasslands and lowest in woodlands and peat-rich soils. There was a shift in dominant SRB taxa from Desulfosporosinus and Desulfobulbus in arable and grassland land uses to Desulfobacca in heathland and bog sites. In contrast, richness of other generalist anaerobic bacterial taxa found in our dataset (e.g., Clostridium, Geobacter and Pelobacter) followed a known trend of declining richness linked to land-use productivity. Overall, the richness of SRBs and anaerobes had strong positive correlations with pH and sulphate concentration and strong negative relationships with elevation, soil organic matter, total carbon and carbon-to-nitrogen ratio. It is likely that these results reflect the driving influence of pH and competition for optimal electron acceptors with generalist anaerobic bacteria on SRB richness.

Keywords

  • anaerobes, atmospheric deposition, dissimilatory sulphate reduction, nutrient cycling, soil acidity
Original languageEnglish
Pages (from-to)2445-2456
Number of pages12
JournalEuropean Journal of Soil Science
Volume72
Issue number6
Early online date3 Sept 2020
DOIs
Publication statusPublished - Nov 2021

Total downloads

No data available
View graph of relations