Deterioration of bio-based polylactic acid plastic teabags under environmental conditions and their associated effects on earthworms
Research output: Contribution to journal › Article › peer-review
Standard Standard
In: Science of the Total Environment, Vol. 934, 15.07.2024, p. 172806.
Research output: Contribution to journal › Article › peer-review
HarvardHarvard
APA
CBE
MLA
VancouverVancouver
Author
RIS
TY - JOUR
T1 - Deterioration of bio-based polylactic acid plastic teabags under environmental conditions and their associated effects on earthworms
AU - Courtene-Jones, Winnie
AU - Burgevin, Fannie
AU - Munns, Liliy
AU - Shillam, Maia B. T.
AU - De Falco, F
AU - Buchard, Antione
AU - Handy, Richard D.
AU - Thompson, Richard C.
AU - Hanley, Mick E.
N1 - Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.
PY - 2024/7/15
Y1 - 2024/7/15
N2 - In response to the plastic waste crisis, teabag producers have substituted the petrochemical-plastic content of their products with bio-based, biodegradable polymers such as polylactic acid (PLA). Despite widespread use, the degradation rate of PLA/PLA-blended materials in natural soil and their effects on soil biota are poorly understood. This study examined the percentage mass deterioration of teabags with differing cellulose:PLA compositions following burial (-10 cm depth) in an arable field margin for 7-months, using a suite of analytical techniques, such as size exclusion chromatography, 1H nuclear magnetic resonance, dynamic scanning calorimetry, and scanning electron microscopy. The effect of 28-d exposure to teabag discs at environmentally relevant concentrations (0.02 %, 0.04 % and 0.07 % w/w) on the survival, growth and reproduction (OECD TG 222 protocol) of the key soil detritivore Eisenia fetida was assessed in laboratory trials. After 7-month burial, Tbag-A (2.4:1 blend) and Tbag-B (3.5:1 cellulose:PLA blend) lost 66 ± 5 % and 78 ± 4 % of their total mass, primarily attributed to degradation of cellulose as identified by FTIR spectroscopy and a reduction in the cellulose:PLA mass ratio, while Tbag-C (PLA) remained unchanged. There were clear treatment and dose-specific effects on the growth and reproductive output of E. fetida. At 0.07 % w/w of Tbag-A adult mortality marginally increased (15 %) and both the quantity of egg cocoons and the average mass of juveniles also increased, while at concentrations ≥0.04 % w/w of Tbag-C, the quantity of cocoons was suppressed. Adverse effects are comparable to those reported for non-biodegradable petrochemical-based plastic, demonstrating that bio-based PLA does not offer a more 'environmentally friendly' alternative. Our study emphasises the necessity to better understand the environmental fate and ecotoxicity of PLA/PLA-blends to ensure interventions developed through the UN Plastic Pollution Treaty to use alternatives and substitutes to conventional plastics do not result in unintended negative consequences.
AB - In response to the plastic waste crisis, teabag producers have substituted the petrochemical-plastic content of their products with bio-based, biodegradable polymers such as polylactic acid (PLA). Despite widespread use, the degradation rate of PLA/PLA-blended materials in natural soil and their effects on soil biota are poorly understood. This study examined the percentage mass deterioration of teabags with differing cellulose:PLA compositions following burial (-10 cm depth) in an arable field margin for 7-months, using a suite of analytical techniques, such as size exclusion chromatography, 1H nuclear magnetic resonance, dynamic scanning calorimetry, and scanning electron microscopy. The effect of 28-d exposure to teabag discs at environmentally relevant concentrations (0.02 %, 0.04 % and 0.07 % w/w) on the survival, growth and reproduction (OECD TG 222 protocol) of the key soil detritivore Eisenia fetida was assessed in laboratory trials. After 7-month burial, Tbag-A (2.4:1 blend) and Tbag-B (3.5:1 cellulose:PLA blend) lost 66 ± 5 % and 78 ± 4 % of their total mass, primarily attributed to degradation of cellulose as identified by FTIR spectroscopy and a reduction in the cellulose:PLA mass ratio, while Tbag-C (PLA) remained unchanged. There were clear treatment and dose-specific effects on the growth and reproductive output of E. fetida. At 0.07 % w/w of Tbag-A adult mortality marginally increased (15 %) and both the quantity of egg cocoons and the average mass of juveniles also increased, while at concentrations ≥0.04 % w/w of Tbag-C, the quantity of cocoons was suppressed. Adverse effects are comparable to those reported for non-biodegradable petrochemical-based plastic, demonstrating that bio-based PLA does not offer a more 'environmentally friendly' alternative. Our study emphasises the necessity to better understand the environmental fate and ecotoxicity of PLA/PLA-blends to ensure interventions developed through the UN Plastic Pollution Treaty to use alternatives and substitutes to conventional plastics do not result in unintended negative consequences.
KW - Animals
KW - Oligochaeta/physiology
KW - Polyesters
KW - Plymouth Devon
KW - Plastics
KW - Soil/chemistry
U2 - 10.1016/j.scitotenv.2024.172806
DO - 10.1016/j.scitotenv.2024.172806
M3 - Article
C2 - 38772795
VL - 934
SP - 172806
JO - Science of the Total Environment
JF - Science of the Total Environment
SN - 0048-9697
ER -