Differential contributions of cardiac, coronary and pulmonary artery vagal mechanoreceptors to reflex control of the circulation
Research output: Contribution to journal › Review article › peer-review
Standard Standard
In: Journal of Physiology, Vol. 600, No. 18, 09.2022, p. 4069-4087.
Research output: Contribution to journal › Review article › peer-review
HarvardHarvard
APA
CBE
MLA
VancouverVancouver
Author
RIS
TY - JOUR
T1 - Differential contributions of cardiac, coronary and pulmonary artery vagal mechanoreceptors to reflex control of the circulation
AU - Moore, Jonathan
AU - Simpson, Lydia
AU - Drinkhill, Mark J
N1 - Funded by Medical Research Council and British Heart Foundation
PY - 2022/9
Y1 - 2022/9
N2 - Distinct populations of stretch-sensitive mechanoreceptors attached to myelinated vagal afferents are found in the heart and adjoining coronary and pulmonary circulations. Receptors at atrio-venous junctions appear to be involved in control of intravascular volume. These atrial receptors influence sympathetic control of the heart and kidney, but contribute little to reflex control of systemic vascular resistance. Baroreceptors at the origins of the coronary circulation elicit reflex vasodilatation, like feedback control from systemic arterial baroreceptors, as well as having characteristics that could contribute to regulation of mean pressure. In contrast, feedback from baroreceptors in the pulmonary artery and bifurcation is excitatory and elicits a pressor response. Elevation of pulmonary arterial pressure resets the vasomotor limb of the systemic arterial baroreflex, which could be relevant for control of sympathetic vasoconstrictor outflow during exercise and other states associated with elevated pulmonary arterial pressure. Ventricular receptors, situated mainly in the inferior posterior wall of the left ventricle, and attached to unmyelinated vagal afferents, are relatively inactive under basal conditions. However, a change to the biochemical environment of cardiac tissue surrounding these receptors elicits a depressor response. Some ventricular receptors respond, modestly, to mechanical distortion. Probably, ventricular receptors contribute little to tonic feedback control; however, reflex bradycardia and hypotension in response to chemical activation may decrease the work of the heart during myocardial ischaemia. Overall, greater awareness of heterogeneous reflex effects originating from cardiac, coronary and pulmonary artery mechanoreceptors is required for a better understanding of integrated neural control of circulatory function and arterial blood pressure.
AB - Distinct populations of stretch-sensitive mechanoreceptors attached to myelinated vagal afferents are found in the heart and adjoining coronary and pulmonary circulations. Receptors at atrio-venous junctions appear to be involved in control of intravascular volume. These atrial receptors influence sympathetic control of the heart and kidney, but contribute little to reflex control of systemic vascular resistance. Baroreceptors at the origins of the coronary circulation elicit reflex vasodilatation, like feedback control from systemic arterial baroreceptors, as well as having characteristics that could contribute to regulation of mean pressure. In contrast, feedback from baroreceptors in the pulmonary artery and bifurcation is excitatory and elicits a pressor response. Elevation of pulmonary arterial pressure resets the vasomotor limb of the systemic arterial baroreflex, which could be relevant for control of sympathetic vasoconstrictor outflow during exercise and other states associated with elevated pulmonary arterial pressure. Ventricular receptors, situated mainly in the inferior posterior wall of the left ventricle, and attached to unmyelinated vagal afferents, are relatively inactive under basal conditions. However, a change to the biochemical environment of cardiac tissue surrounding these receptors elicits a depressor response. Some ventricular receptors respond, modestly, to mechanical distortion. Probably, ventricular receptors contribute little to tonic feedback control; however, reflex bradycardia and hypotension in response to chemical activation may decrease the work of the heart during myocardial ischaemia. Overall, greater awareness of heterogeneous reflex effects originating from cardiac, coronary and pulmonary artery mechanoreceptors is required for a better understanding of integrated neural control of circulatory function and arterial blood pressure.
KW - baroreceptor reflex
KW - cardiovascular control
KW - sympathetic nerve activity
KW - vagal afferent
U2 - 10.1113/JP282305
DO - 10.1113/JP282305
M3 - Review article
C2 - 35903901
VL - 600
SP - 4069
EP - 4087
JO - Journal of Physiology
JF - Journal of Physiology
SN - 0022-3751
IS - 18
ER -