Electronic versions

Documents

DOI

  • Siyuan Lu
    Northeast Normal University, Changchun
  • Jiahua Hao
    Northeast Normal University, Changchun
  • Hao Yang
    Northeast Normal University, Changchun
  • Mengya Chen
    Northeast Normal University, Changchun
  • Jiapan Lian
    Zhejiang University
  • Yalan Chen
    Beijing Normal University
  • Robert W Brown
    School of Environmental and Natural Sciences, Bangor UniversityBangor University
  • Davey L Jones
    School of Environmental and Natural Sciences, Bangor UniversityBangor University
  • Zhuoma Wan
    Northeast Normal University, Changchun
  • Wei Wang
    Jilin Normal University
  • Wenjin Chang
    Northeast Normal University, Changchun
  • Donghui Wu
    Northeast Normal University, Changchun

There is a growing body of evidence that suggests that both biodegradable and conventional (non-degradable) microplastics (MP) are hazardous to soil health by affecting the delivery of key ecological functions such as litter decomposition, nutrient cycling and water retention. Specifically, soil fauna may be harmed by the presence of MPs while also being involved in their disintegration, degradation, migration and transfer in soil. Therefore, a comprehensive understanding of the interactions between MPs and soil fauna is essential. Here, we conducted a 120-day soil microcosm experiment applying polyethylene (PE) and polylactic acid (PLA), in the absence/presence of the earthworm Eisenia nordenskioldi to estimate the relative singular and combined impact of MPs and earthworms on the soil bacterial community. Our findings revealed contrasting effects of PE and PLA on the composition and diversity of soil bacteria. All treatments affected the community and network structure of the soil bacterial community. Compared to the control (no MPs or earthworms), PE decreased bacterial alpha diversity, while PLA increased it. Patescibacteria were found to be significantly abundant in the PE group whereas Actinobacteria and Gemmatimonadetes were more abundant in PE, and PLA and earthworms groups. The presence of earthworms appeared to mediate the impact of PE/PLA on soil bacteria, potentially through bacterial consumption or by altering soil properties (e.g., pH, aeration, C availability). Earthworm presence also appeared to promote the chemical aging of PLA. Collectively, our results provide novel insights into the soil-fauna-driven impact of degradable/nondegradable MPs exposure on the long-term environmental risks associated with soil microorganisms.

Original languageEnglish
Article number166959
JournalScience of the Total Environment
Volume905
Early online date9 Sept 2023
DOIs
Publication statusPublished - 20 Dec 2023
Externally publishedYes

Total downloads

No data available
View graph of relations