Ensemble modeling of global lake evaporation under climate change
Research output: Contribution to journal › Article › peer-review
Electronic versions
DOI
Global projections of lake evaporation are typically based on simulations using single mechanistic models. However, because of its complex interactions with various lake physical properties, environmental and anthropogenic drivers, lake evaporation is highly variable and sensitive to the choice of model used. In this study, we present a multi-model analysis to investigate differences across global simulations of lake evaporation during the warm-season using three different lake models driven by outputs from four general circulation models (GCM) (i.e. 12 model combinations in total) for historic and future scenarios. Our results suggest substantial differences among lake-climate model simulations of lake evaporation. These differences varied throughout the 20th and 21st century, with model driver data explaining 74% of the variance in future projections of warm-season lake evaporation. Our projections indicate that, by the end of the 21st century (2070–2099), global annual lake evaporation rates will increase by 10–27% under Representative Concentration Pathways (RCPs) 2.6–8.5. We highlight the importance of using a multi-model approach for the prediction of future global lake evaporation responses to climate change.
Keywords
- ISIMIP, Uncertainty, Inland waters, Lake modelling, Multi-model
Original language | English |
---|---|
Article number | 130647 |
Journal | Journal of Hydrology |
Volume | 631 |
Early online date | 24 Jan 2024 |
DOIs | |
Publication status | Published - 1 Mar 2024 |