Experimental synthesis and density functional theory investigation of radiation tolerance of Zr-3(Al1-xSix)C-2 MAX phases
Research output: Contribution to journal › Article › peer-review
Standard Standard
In: Journal of American Ceramic Society, Vol. 100, No. 4, 01.04.2017, p. 1377-1387.
Research output: Contribution to journal › Article › peer-review
HarvardHarvard
APA
CBE
MLA
VancouverVancouver
Author
RIS
TY - JOUR
T1 - Experimental synthesis and density functional theory investigation of radiation tolerance of Zr-3(Al1-xSix)C-2 MAX phases
AU - Zapata-Solvas, Eugenio
AU - Christopoulos, Stavros-Richard G.
AU - Ni, Na
AU - Parfitt, David C.
AU - Horlait, Denis
AU - Fitzpatrick, Michael E.
AU - Chroneos, Alexander
AU - Lee, William E.
PY - 2017/4/1
Y1 - 2017/4/1
N2 - Synthesis, characterization and density functional theory calculations have been combined to examine the formation of the Zr3(Al1–xSix)C2 quaternary MAX phases and the intrinsic defect processes in Zr3AlC2 and Zr3SiC2. The MAX phase family is extended by demonstrating that Zr3(Al1–xSix)C2, and particularly compositions with x≈0.1, can be formed leading here to a yield of 59 wt%. It has been found that Zr3AlC2 ‐ and by extension Zr3(Al1–xSix)C2 ‐ formation rates benefit from the presence of traces of Si in the reactant mix, presumably through the in situ formation of ZrySiz phase(s) acting as a nucleation substrate for the MAX phase. To investigate the radiation tolerance of Zr3(Al1–xSix)C2, we have also considered the intrinsic defect properties of the end‐members. A‐element Frenkel reaction for both Zr3AlC2 (1.71 eV) and Zr3SiC2 (1.41 eV) phases are the lowest energy defect reactions. For comparison we consider the defect processes in Ti3AlC2 and Ti3SiC2 phases. It is concluded that Zr3AlC2 and Ti3AlC2 MAX phases are more radiation tolerant than Zr3SiC2 and Ti3SiC2, respectively. Their applicability as cladding materials for nuclear fuel is discussed.
AB - Synthesis, characterization and density functional theory calculations have been combined to examine the formation of the Zr3(Al1–xSix)C2 quaternary MAX phases and the intrinsic defect processes in Zr3AlC2 and Zr3SiC2. The MAX phase family is extended by demonstrating that Zr3(Al1–xSix)C2, and particularly compositions with x≈0.1, can be formed leading here to a yield of 59 wt%. It has been found that Zr3AlC2 ‐ and by extension Zr3(Al1–xSix)C2 ‐ formation rates benefit from the presence of traces of Si in the reactant mix, presumably through the in situ formation of ZrySiz phase(s) acting as a nucleation substrate for the MAX phase. To investigate the radiation tolerance of Zr3(Al1–xSix)C2, we have also considered the intrinsic defect properties of the end‐members. A‐element Frenkel reaction for both Zr3AlC2 (1.71 eV) and Zr3SiC2 (1.41 eV) phases are the lowest energy defect reactions. For comparison we consider the defect processes in Ti3AlC2 and Ti3SiC2 phases. It is concluded that Zr3AlC2 and Ti3AlC2 MAX phases are more radiation tolerant than Zr3SiC2 and Ti3SiC2, respectively. Their applicability as cladding materials for nuclear fuel is discussed.
KW - density functional theory
KW - MAX phases
KW - powder synthesis
KW - silicon
U2 - 10.1111/jace.14742
DO - 10.1111/jace.14742
M3 - Article
VL - 100
SP - 1377
EP - 1387
JO - Journal of American Ceramic Society
JF - Journal of American Ceramic Society
SN - 0002-7820
IS - 4
ER -