Fine sediment in mixed sand-silt environments impact bedform geometry by altering sediment mobility
Research output: Contribution to journal › Article › peer-review
Standard Standard
In: Water Resources Research, Vol. 60, No. 7, e2024WR037065, 07.2024.
Research output: Contribution to journal › Article › peer-review
HarvardHarvard
APA
CBE
MLA
VancouverVancouver
Author
RIS
TY - JOUR
T1 - Fine sediment in mixed sand-silt environments impact bedform geometry by altering sediment mobility
AU - de Lange, S.L.
AU - Niesten, I.
AU - van de Veen, S.H.J.
AU - Baas, Jaco
AU - Lammers, J.
AU - Waldschlaeger, K.
AU - Boelee, D.
AU - Hoitink, A.J.F.
PY - 2024/7
Y1 - 2024/7
N2 - Geometric characteristics of subaqueous bedforms, such as height, length and leeside angle, are crucial for determining hydraulic form roughness and interpreting sedimentary records. Traditionally, bedform existence and geometry predictors are primarily based on uniform, cohesionless sediments. However, mixtures of sand, silt and clay are common in deltaic, estuarine, and lowland river environments, where bedforms are ubiquitous. Therefore, we investigate the impact of fine sand and silt in sand-silt mixtures on bedform geometry, based on laboratory experiments conducted in a recirculating flume.We systematically varied the fraction of sand and silt for different discharges, and utlized an acoustic Doppler velocimeter to measure flow velocity profiles. The final bed geometry was captured using a line laser scanner. Our findings reveal that the response of bedforms to an altered fine sediment percentage is ambiguous, and likely depends on, among others, bimodality-driven bed mobility and sediment cohesiveness. When fine, non-cohesive material (fine sand or coarse silt) is mixed with the base material (medium sand), an increased dune height and length is observed, possibly caused by the hiding exposure effect, resulting in enhanced mobility of the coarser material. However, weakly cohesive fine silt suppresses dune height and length, possibly caused by reduced sedimentmobility. Finally, in the transition from dunes to upper stage plane bed, there are indications that the bed becomes unstable and dune heights vary over time. The composition of the bed material does not significantly impact the hydraulic roughness, but mainly affects roughness via the bed morphology, especially the leeside angle.
AB - Geometric characteristics of subaqueous bedforms, such as height, length and leeside angle, are crucial for determining hydraulic form roughness and interpreting sedimentary records. Traditionally, bedform existence and geometry predictors are primarily based on uniform, cohesionless sediments. However, mixtures of sand, silt and clay are common in deltaic, estuarine, and lowland river environments, where bedforms are ubiquitous. Therefore, we investigate the impact of fine sand and silt in sand-silt mixtures on bedform geometry, based on laboratory experiments conducted in a recirculating flume.We systematically varied the fraction of sand and silt for different discharges, and utlized an acoustic Doppler velocimeter to measure flow velocity profiles. The final bed geometry was captured using a line laser scanner. Our findings reveal that the response of bedforms to an altered fine sediment percentage is ambiguous, and likely depends on, among others, bimodality-driven bed mobility and sediment cohesiveness. When fine, non-cohesive material (fine sand or coarse silt) is mixed with the base material (medium sand), an increased dune height and length is observed, possibly caused by the hiding exposure effect, resulting in enhanced mobility of the coarser material. However, weakly cohesive fine silt suppresses dune height and length, possibly caused by reduced sedimentmobility. Finally, in the transition from dunes to upper stage plane bed, there are indications that the bed becomes unstable and dune heights vary over time. The composition of the bed material does not significantly impact the hydraulic roughness, but mainly affects roughness via the bed morphology, especially the leeside angle.
U2 - 10.1029/2024WR037065
DO - 10.1029/2024WR037065
M3 - Article
VL - 60
JO - Water Resources Research
JF - Water Resources Research
SN - 0043-1397
IS - 7
M1 - e2024WR037065
ER -