Electronic versions

Documents

  • paperEJOR

    Accepted author manuscript, 1.36 MB, PDF document

    Embargo ends: 8/08/22

    Licence: CC BY-NC-ND Show licence

DOI

Policymakers during COVID-19 operate in uncharted territory and must make tough decisions. Operational Research - the ubiquitous ‘science of better’ - plays a vital role in supporting this decision-making process. To that end, using data from the USA, India, UK, Germany, and Singapore up to mid-April 2020, we provide predictive analytics tools for forecasting and planning during a pandemic. We forecast COVID-19 growth rates with statistical, epidemiological, machine- and deep-learning models, and a new hybrid forecasting method based on nearest neighbors and clustering. We further model and forecast the excess demand for products and services during the pandemic using auxiliary data (google trends) and simulating governmental decisions (lockdown). Our empirical results can immediately help policymakers and planners make better decisions during the ongoing and future pandemics.
Original languageEnglish
Pages (from-to)99-115
Number of pages17
JournalEuropean Journal of Operational Research
Volume290
Issue number1
Early online date8 Aug 2020
DOIs
Publication statusPublished - 1 Apr 2021
View graph of relations