Genetic distance predicts trait differentiation at the subpopulation but not the individual level in eelgrass, Zostera marina
Research output: Contribution to journal › Article › peer-review
Standard Standard
In: Ecology and Evolution, Vol. 8, No. 15, 01.08.2018, p. 7476-7489.
Research output: Contribution to journal › Article › peer-review
HarvardHarvard
APA
CBE
MLA
VancouverVancouver
Author
RIS
TY - JOUR
T1 - Genetic distance predicts trait differentiation at the subpopulation but not the individual level in eelgrass, Zostera marina
AU - Abbott, Jessica
AU - Dubois, Katie
AU - Grosberg, Richard
AU - Williams, Susan
AU - Stachowicz, Jay
PY - 2018/8/1
Y1 - 2018/8/1
N2 - Ecological studies often assume that genetically similar individuals will be more simi-lar in phenotypic traits, such that genetic diversity can serve as a proxy for trait di-versity. Here, we explicitly test the relationship between genetic relatedness and trait distance using 40 eelgrass (Zostera marina) genotypes from five sites within Bodega Harbor, CA. We measured traits related to nutrient uptake, morphology, bio-mass and growth, photosynthesis, and chemical deterrents for all genotypes. We used these trait measurements to calculate a multivariate pairwise trait distance for all possible genotype combinations. We then estimated pairwise relatedness from 11 microsatellite markers. We found significant trait variation among genotypes for nearly every measured trait; however, there was no evidence of a significant correla-tion between pairwise genetic relatedness and multivariate trait distance among in-dividuals. However, at the subpopulation level (sites within a harbor), genetic (FST) and trait differentiation were positively correlated. Our work suggests that pairwise relatedness estimated from neutral marker loci is a poor proxy for trait differentia-tion between individual genotypes. It remains to be seen whether genomewide measures of genetic differentiation or easily measured “master” traits (like body size) might provide good predictions of overall trait differentiation
AB - Ecological studies often assume that genetically similar individuals will be more simi-lar in phenotypic traits, such that genetic diversity can serve as a proxy for trait di-versity. Here, we explicitly test the relationship between genetic relatedness and trait distance using 40 eelgrass (Zostera marina) genotypes from five sites within Bodega Harbor, CA. We measured traits related to nutrient uptake, morphology, bio-mass and growth, photosynthesis, and chemical deterrents for all genotypes. We used these trait measurements to calculate a multivariate pairwise trait distance for all possible genotype combinations. We then estimated pairwise relatedness from 11 microsatellite markers. We found significant trait variation among genotypes for nearly every measured trait; however, there was no evidence of a significant correla-tion between pairwise genetic relatedness and multivariate trait distance among in-dividuals. However, at the subpopulation level (sites within a harbor), genetic (FST) and trait differentiation were positively correlated. Our work suggests that pairwise relatedness estimated from neutral marker loci is a poor proxy for trait differentia-tion between individual genotypes. It remains to be seen whether genomewide measures of genetic differentiation or easily measured “master” traits (like body size) might provide good predictions of overall trait differentiation
U2 - 10.1002/ece3.4260
DO - 10.1002/ece3.4260
M3 - Article
VL - 8
SP - 7476
EP - 7489
JO - Ecology and Evolution
JF - Ecology and Evolution
SN - 2045-7758
IS - 15
ER -