Inhibitory control training reveals a common neurofunctional basis for generic executive functions and language switching in bilinguals
Research output: Contribution to journal › Article › peer-review
Electronic versions
Documents
- 2021 Inhibitory Control
Final published version, 2.05 MB, PDF document
Licence: CC BY Show licence
DOI
Background
The neural networks underpinning language control and domain-general executive functions overlap in bilinguals, but existing evidence is mainly correlative. Here, we present the first neurofunctional evidence for a transfer effect between (domain-general) inhibitory control and language control through training. We trained Chinese–English bilinguals for 8 days using a Simon task taxing the inhibitory control system, whilst an active control group was trained with a color judgment task that does not tax the inhibitory control system. All participants performed a language-switching task before and after training. It has been suggested that the activity of the left DLPFC was associated with domain-general top-down cognitive control (Macdonald et al. Science 288: 1835–1838, 2000) and bilingual language control (Wang et al. Neuroimage 35: 862–870, 2007). In addition, the dACC was closely related to the conflict detection (Abutalebi et al. Cereb Cortex 18:1496–1505, 2008). Last, the activity of the left caudate has been linked with lexical selection (Abutalebi et al. Cereb Cortex 18:1496–1505, 2008), especially the selection of the weak language (Abutalebi et al. Cortex 49: 905–911, 2013). Therefore, we focused on these three regions of interest (ROIs) where neural changes associated with transfer were expected to occur.
Results
The results showed a negative correlation between changes in activation levels in the left dorsolateral prefrontal cortex (DLPFC) and changes in the switch cost magnitude in the language-switching task in the training group but not in the control group, suggesting that the DLPFC plays a critical role in the transfer effect from domain-general executive functions to language control. However, there was no measurable effect in the anterior cingulate cortex or left caudate nucleus, suggesting that the inhibitory control training increased the neural efficiency for language production in bilinguals in terms of attention shifting and conflict resolution, but the training did not affect conflict detection and lexical selection.
Conclusion
These findings showed how cognitive training evidence can help establish a causational link between the neural basis of domain-general executive functions and language control in bilinguals.
The neural networks underpinning language control and domain-general executive functions overlap in bilinguals, but existing evidence is mainly correlative. Here, we present the first neurofunctional evidence for a transfer effect between (domain-general) inhibitory control and language control through training. We trained Chinese–English bilinguals for 8 days using a Simon task taxing the inhibitory control system, whilst an active control group was trained with a color judgment task that does not tax the inhibitory control system. All participants performed a language-switching task before and after training. It has been suggested that the activity of the left DLPFC was associated with domain-general top-down cognitive control (Macdonald et al. Science 288: 1835–1838, 2000) and bilingual language control (Wang et al. Neuroimage 35: 862–870, 2007). In addition, the dACC was closely related to the conflict detection (Abutalebi et al. Cereb Cortex 18:1496–1505, 2008). Last, the activity of the left caudate has been linked with lexical selection (Abutalebi et al. Cereb Cortex 18:1496–1505, 2008), especially the selection of the weak language (Abutalebi et al. Cortex 49: 905–911, 2013). Therefore, we focused on these three regions of interest (ROIs) where neural changes associated with transfer were expected to occur.
Results
The results showed a negative correlation between changes in activation levels in the left dorsolateral prefrontal cortex (DLPFC) and changes in the switch cost magnitude in the language-switching task in the training group but not in the control group, suggesting that the DLPFC plays a critical role in the transfer effect from domain-general executive functions to language control. However, there was no measurable effect in the anterior cingulate cortex or left caudate nucleus, suggesting that the inhibitory control training increased the neural efficiency for language production in bilinguals in terms of attention shifting and conflict resolution, but the training did not affect conflict detection and lexical selection.
Conclusion
These findings showed how cognitive training evidence can help establish a causational link between the neural basis of domain-general executive functions and language control in bilinguals.
Keywords
- Inhibitory control, Language production, Language control, Transfer effect, fMRI
Original language | English |
---|---|
Article number | 36 |
Journal | BMC Neuroscience |
Volume | 22 |
Issue number | 1 |
DOIs | |
Publication status | Published - 17 May 2021 |
Total downloads
No data available