Electronic versions

Documents

DOI

  • Colin Watson
  • E.M. Lopes
    Brazilian Centre of Research in Energy and Materials (CNPEM)
  • R.F. De Oliveira
    Brazilian Centre of Research in Energy and Materials (CNPEM)
  • N. Alves
    São Paulo State University
  • J.A. Giacometti
    University of Sao Paulo
  • David Taylor
We report the results of an investigation into the contribution that trapping in interface states makes to the photovoltaic effect observed in organic phototransistors. To isolate this effect from other processes that occur in the transistor structure when under illumination, we focus attention on the photo-response of metal-insulator-semiconductor (MIS) capacitors - the core structure of transistors. The capacitors comprised poly(3-hexylthiophene), (P3HT), as the active semiconductor in combination with one of three insulators, namely, poly(amide-imide), (PAI), SU-8 photoresist and polysilsesquioxane (PSQ). Following initial characterisation in the dark, the capacitor response was measured both during and after irradiation with light in the wavelength range 400–700 nm. Three different approaches were employed to study the photo-response, each providing a different insight into the processes occurring. Capacitance-voltage sweeps before, during and after illumination provided direct evidence supporting the view that the photovoltaic effect occurred as a result of electron trapping in interface states of density up to ∼2 × 1012 cm−2 in the P3HT/PAI combination but lower for SU-8 and PSQ. The dynamic photo-response, in which device capacitance was held constant by changing the applied bias, showed a fast component related to optically induced photoconduction in the semiconductor and a slower component reflecting the dynamics of interface electron trapping. Finally, photo-induced capacitance changes occurring with constant applied voltage were used to demonstrate a simple 3 × 3 imaging array.
Original languageEnglish
Pages (from-to)78-88
JournalOrganic Electronics
Volume52
Early online date10 Oct 2017
DOIs
Publication statusPublished - Jan 2018

Total downloads

No data available
View graph of relations