Kalman Filter-Based Super-Twisting Sliding Mode Control of Shunt Active Power Filter for Electric Vehicle Charging Station Applications
Research output: Contribution to journal › Article › peer-review
Standard Standard
In: IEEE Transactions on Power Delivery, 13.09.2022.
Research output: Contribution to journal › Article › peer-review
HarvardHarvard
APA
CBE
MLA
VancouverVancouver
Author
RIS
TY - JOUR
T1 - Kalman Filter-Based Super-Twisting Sliding Mode Control of Shunt Active Power Filter for Electric Vehicle Charging Station Applications
AU - Çelik, Doğan
AU - Ahmed, Hafiz
AU - Meral, Mehmet Emin
PY - 2022/9/13
Y1 - 2022/9/13
N2 - Electric vehicle (EV) charging stations draw nonlinear currents, which makes the distribution network unbalanced, distorted, and results in power quality (PQ) issues. These PQ issues are mitigated in this work through high-performance control of the shunt active power filter (SAPF). In the proposed method, a linear Kalman filter (LKF) has been applied to grid voltage and load current signals for harmonic and disturbance robust estimation purpose. Unlike the conventionally used orthogonal vector model, in this work, phase angle vector model together with a simple to tune phase-locked loop (PLL) has been considered for the LKF implementation. DC-link voltage regulation and charging of the DC-link capacitor has been obtained by proposing a Luenberger observer-based super twisting sliding mode control (ST-SMC), which has fast dynamic response and lower voltage ripples compared to similar other existing control methods. This results in significant reduction in size, cost and loss together with lifetime enhancement of the DC-link capacitor. Rigorous sensitivity analysis is conducted to analyze the robustness of the developed method. The proposed control technique achieves fast response time and satisfy the harmonic requirements as specified in the IEEE Std. 519 under various grid and load disturbances. Comparative quasi-real time validation results are presented by using digital signal processor (DSP) based processor-in-the-loop (PIL) with another recently proposed control strategy to verify the performance enhancement by the developed method.
AB - Electric vehicle (EV) charging stations draw nonlinear currents, which makes the distribution network unbalanced, distorted, and results in power quality (PQ) issues. These PQ issues are mitigated in this work through high-performance control of the shunt active power filter (SAPF). In the proposed method, a linear Kalman filter (LKF) has been applied to grid voltage and load current signals for harmonic and disturbance robust estimation purpose. Unlike the conventionally used orthogonal vector model, in this work, phase angle vector model together with a simple to tune phase-locked loop (PLL) has been considered for the LKF implementation. DC-link voltage regulation and charging of the DC-link capacitor has been obtained by proposing a Luenberger observer-based super twisting sliding mode control (ST-SMC), which has fast dynamic response and lower voltage ripples compared to similar other existing control methods. This results in significant reduction in size, cost and loss together with lifetime enhancement of the DC-link capacitor. Rigorous sensitivity analysis is conducted to analyze the robustness of the developed method. The proposed control technique achieves fast response time and satisfy the harmonic requirements as specified in the IEEE Std. 519 under various grid and load disturbances. Comparative quasi-real time validation results are presented by using digital signal processor (DSP) based processor-in-the-loop (PIL) with another recently proposed control strategy to verify the performance enhancement by the developed method.
U2 - 10.1109/TPWRD.2022.3206267
DO - 10.1109/TPWRD.2022.3206267
M3 - Article
JO - IEEE Transactions on Power Delivery
JF - IEEE Transactions on Power Delivery
SN - 1937-4208
ER -