Lake Ice Will Be Less Safe for Recreation and Transportation Under Future Warming
Research output: Contribution to journal › Article › peer-review
Standard Standard
In: Earth's Future, Vol. 10, No. 10, e2022EF002907, 01.10.2022.
Research output: Contribution to journal › Article › peer-review
HarvardHarvard
APA
CBE
MLA
VancouverVancouver
Author
RIS
TY - JOUR
T1 - Lake Ice Will Be Less Safe for Recreation and Transportation Under Future Warming
AU - Woolway, R. Iestyn
AU - Huang, Lei
AU - Sharma, Sapna
AU - Lee, Sun-Seon
AU - Rodgers, Keith B.
AU - Timmermann, Axel
PY - 2022/10/1
Y1 - 2022/10/1
N2 - Millions of lakes from around the world freeze during winter. These frozen surfaces provide essential ecosystem services that are vital to many northern communities. However, the availability of safe lake ice that is oftentimes required to support these services is under threat from climate change. Here we use a 100-member ensemble of climate model simulations to investigate changes in the presence of safe lake ice for different recreation and provisioning activities across the Northern Hemisphere. Our projections suggest that the duration of safe ice for recreational purposes will shorten, on average, by 13, 17, and 24 days within a 1.5°C, 2°C, and 3°C warmer world (relative to 1900–1929), respectively. The projected change in the duration of safe ice will be greater in higher latitudes, but with the most densely populated lower-latitude regions experiencing the greatest percent change. The use of lake ice to support critical transportation infrastructure will also be influenced by future warming through the loss of thicker ice this century. However, our projections suggest that the magnitude of change in the duration of safe ice will differ depending on the ice thickness requirements. For transportation that requires the thickest ice cover, the number of days with safe ice will decline by 90%, 95%, and 99% with 1.5°C, 2°C, and 3°C global warming, respectively. We highlight the need for the development and implementation of adaptation plans to address the imminent loss of critical wintertime transportation infrastructure across the Northern Hemisphere.
AB - Millions of lakes from around the world freeze during winter. These frozen surfaces provide essential ecosystem services that are vital to many northern communities. However, the availability of safe lake ice that is oftentimes required to support these services is under threat from climate change. Here we use a 100-member ensemble of climate model simulations to investigate changes in the presence of safe lake ice for different recreation and provisioning activities across the Northern Hemisphere. Our projections suggest that the duration of safe ice for recreational purposes will shorten, on average, by 13, 17, and 24 days within a 1.5°C, 2°C, and 3°C warmer world (relative to 1900–1929), respectively. The projected change in the duration of safe ice will be greater in higher latitudes, but with the most densely populated lower-latitude regions experiencing the greatest percent change. The use of lake ice to support critical transportation infrastructure will also be influenced by future warming through the loss of thicker ice this century. However, our projections suggest that the magnitude of change in the duration of safe ice will differ depending on the ice thickness requirements. For transportation that requires the thickest ice cover, the number of days with safe ice will decline by 90%, 95%, and 99% with 1.5°C, 2°C, and 3°C global warming, respectively. We highlight the need for the development and implementation of adaptation plans to address the imminent loss of critical wintertime transportation infrastructure across the Northern Hemisphere.
KW - safe lake ice
KW - recreation
KW - transportation
KW - projection
KW - CESM2
KW - large ensemble
U2 - 10.1029/2022EF002907
DO - 10.1029/2022EF002907
M3 - Article
VL - 10
JO - Earth's Future
JF - Earth's Future
SN - 2328-4277
IS - 10
M1 - e2022EF002907
ER -