Machine learning for ecosystem services

Research output: Contribution to journalArticle

Electronic versions

Documents

DOI

  • Simon Willcock
  • Javier Martinez-Lopez
    Basque Centre of Climate Change
  • Danny Hooftman
    Centre for Ecology and Hydrology, Wallingford, UK
  • Kenneth Bagstad
    US Geological Survey
  • Stefano Balbi
    Basque Centre of Climate Change
  • Alessia Marzo
    University of Cantania
  • Carlo Prato
    University of Cantania
  • Saverio Sciandrello
    University of Cantania
  • Giovanni Signorello
    University of Cantania
  • Brian Voigt
    University of Vermont
  • Ferdinando Villa
    Basque Centre of Climate Change
  • James Bullock
    Centre for Ecology and Hydrology, Wallingford, UK
  • Ioannis Athanasiadis
    Wageningen University
Recent developments in machine learning have expanded data-driven modelling (DDM) capabilities, allowing artificial intelligence to infer the behaviour of a system by computing and exploiting correlations between observed variables within it. Machine learning algorithms may enable the use of increasingly available ‘big data’ and assist applying ecosystem service models across scales, analysing and predicting the flows of these services to disaggregated beneficiaries. We use the Weka and ARIES software to produce two examples of DDM: firewood use in South Africa and biodiversity value in Sicily, respectively. Our South African example demonstrates that DDM (64-91% accuracy) can identify the areas where firewood use is within the top quartile with comparable accuracy as conventional modelling techniques (54-77% accuracy). The Sicilian example highlights how DDM can be made more accessible to decision makers, who show both capacity and willingness to engage with uncertainty information. Uncertainty estimates, produced as part of the DDM process, allow decision makers to determine what level of uncertainty is acceptable to them and to use their own expertise for potentially contentious decisions. We conclude that DDM has a clear role to play when modelling ecosystem services, helping produce interdisciplinary models and holistic solutions to complex socio-ecological issues.

Keywords

  • ARIES, Artificial intelligence, Big data, Data driven modelling, data science, Machine learning, Mapping, Modelling, Uncertainty, Weka
Original languageEnglish
Pages (from-to)165-174
Number of pages19
JournalEcosystem Services
Volume33 pt B
Early online date5 May 2018
DOIs
Publication statusPublished - Oct 2018

Total downloads

No data available
View graph of relations