Microscopic Structure of Liquid Nitric Oxide
Research output: Contribution to journal › Article › peer-review
Electronic versions
DOI
The microscopic structure of nitric oxide is investigated using neutron scattering experiments. The measurements are performed at various temperatures between 120 and 144 K and at pressures between 1.1 and 9 bar. Using the technique of empirical potential structure refinement (EPSR), our results show that the dimer is the main form, around 80%, of nitric oxide in the liquid phase at 120 K, but the degree of dissociation to monomers increases with increasing temperature. The reported degree of dissociation of dimers, and its trend with increasing temperature, is consistent with earlier measurements and studies. It is also shown that nonplanar dimers are not inconsistent with the diffraction data and that the possibility of nitric oxide molecules forming longer oligomers, consisting of bonded nitrogen atoms along the backbone, cannot be ruled out in the liquid. A molecular dynamics simulation is used to compare the present EPSR simulations with an earlier proposed intermolecular potential for the liquid.
Original language | English |
---|---|
Pages (from-to) | 9860-9870 |
Journal | Journal of Physical Chemistry B |
Volume | 126 |
Issue number | 47 |
Early online date | 18 Nov 2022 |
DOIs | |
Publication status | Published - 1 Dec 2022 |
Externally published | Yes |