National-scale antimicrobial resistance surveillance in wastewater: A comparative analysis of HT qPCR and metagenomic approaches
Research output: Contribution to journal › Article › peer-review
Standard Standard
In: Water research, Vol. 262, 15.09.2024, p. 121989.
Research output: Contribution to journal › Article › peer-review
HarvardHarvard
APA
CBE
MLA
VancouverVancouver
Author
RIS
TY - JOUR
T1 - National-scale antimicrobial resistance surveillance in wastewater
T2 - A comparative analysis of HT qPCR and metagenomic approaches
AU - Knight, Margaret E
AU - Webster, Gordon
AU - Perry, William B
AU - Baldwin, Amy
AU - Rushton, Laura
AU - Pass, Daniel A
AU - Cross, Gareth
AU - Durance, Isabelle
AU - Muziasari, Windi
AU - Kille, Peter
AU - Farkas, Kata
AU - Weightman, Andrew J
AU - Jones, Davey L
N1 - Copyright © 2024. Published by Elsevier Ltd.
PY - 2024/9/15
Y1 - 2024/9/15
N2 - Wastewater serves as an important reservoir of antimicrobial resistance (AMR), and its surveillance can provide insights into population-level trends in AMR to inform public health policy. This study compared two common high-throughput screening approaches, namely (i) high-throughput quantitative PCR (HT qPCR), targeting 73 antimicrobial resistance genes, and (ii) metagenomic sequencing. Weekly composite samples of wastewater influent were taken from 47 wastewater treatment plants (WWTPs) across Wales, as part of a national AMR surveillance programme, alongside 4 weeks of daily wastewater effluent samples from a large municipal hospital. Metagenomic analysis provided more comprehensive resistome coverage, detecting 545 genes compared to the targeted 73 genes by HT qPCR. It further provided contextual information critical to risk assessment (i.e. potential bacterial hosts). In contrast, HT qPCR exhibited higher sensitivity, quantifying all targeted genes including those of clinical relevance present at low abundance. When limited to the HT qPCR target genes, both methods were able to reflect the spatiotemporal dynamics of the complete metagenomic resistome, distinguishing that of the hospital and the WWTPs. Both approaches revealed correlations between resistome compositional shifts and environmental variables like ammonium wastewater concentration, though differed in their interpretation of some potential influencing factors. Overall, metagenomics provides more comprehensive resistome profiling, while qPCR permits sensitive quantification of genes significant to clinical resistance. We highlight the importance of selecting appropriate methodologies aligned to surveillance aims to guide the development of effective wastewater-based AMR monitoring programmes.
AB - Wastewater serves as an important reservoir of antimicrobial resistance (AMR), and its surveillance can provide insights into population-level trends in AMR to inform public health policy. This study compared two common high-throughput screening approaches, namely (i) high-throughput quantitative PCR (HT qPCR), targeting 73 antimicrobial resistance genes, and (ii) metagenomic sequencing. Weekly composite samples of wastewater influent were taken from 47 wastewater treatment plants (WWTPs) across Wales, as part of a national AMR surveillance programme, alongside 4 weeks of daily wastewater effluent samples from a large municipal hospital. Metagenomic analysis provided more comprehensive resistome coverage, detecting 545 genes compared to the targeted 73 genes by HT qPCR. It further provided contextual information critical to risk assessment (i.e. potential bacterial hosts). In contrast, HT qPCR exhibited higher sensitivity, quantifying all targeted genes including those of clinical relevance present at low abundance. When limited to the HT qPCR target genes, both methods were able to reflect the spatiotemporal dynamics of the complete metagenomic resistome, distinguishing that of the hospital and the WWTPs. Both approaches revealed correlations between resistome compositional shifts and environmental variables like ammonium wastewater concentration, though differed in their interpretation of some potential influencing factors. Overall, metagenomics provides more comprehensive resistome profiling, while qPCR permits sensitive quantification of genes significant to clinical resistance. We highlight the importance of selecting appropriate methodologies aligned to surveillance aims to guide the development of effective wastewater-based AMR monitoring programmes.
KW - Wastewater/microbiology
KW - Metagenomics/methods
KW - Drug Resistance, Bacterial/genetics
KW - Real-Time Polymerase Chain Reaction
KW - Environmental Monitoring/methods
KW - Bacteria/genetics
U2 - 10.1016/j.watres.2024.121989
DO - 10.1016/j.watres.2024.121989
M3 - Article
C2 - 39018584
VL - 262
SP - 121989
JO - Water research
JF - Water research
SN - 0043-1354
ER -