Novel Graphene Biosensor Based on the Functionalization of Multifunctional Nano-BSA for the Highly Sensitive Detection of Cancer Biomarker
Research output: Contribution to journal › Article › peer-review
Electronic versions
Documents
- 2019 - Novel graphene biosensor
Final published version, 1 MB, PDF document
Licence: CC BY Show licence
DOI
A simple, convenient, and highly sensitive bio-interface for graphene field-effect transistors (GFETs) based on multifunctional nano-denatured bovine serum albumin (nano-dBSA) functionalization was developed to target cancer biomarkers. The novel graphene–protein bioelectronic interface was constructed by heating to denature native BSA on the graphene substrate surface. The formed nano-dBSA film served as the cross-linker to immobilize monoclonal antibody against carcinoembryonic antigen (anti-CEA mAb) on the graphene channel activated by EDC and Sulfo-NHS. The nano-dBSA film worked as a self-protecting layer of graphene to prevent surface contamination by lithographic processing. The improved GFET biosensor exhibited good specificity and high sensitivity toward the target at an ultralow concentration of 337.58 fg mL−1. The electrical detection of the binding of CEA followed the Hill model for ligand–receptor interaction, indicating the negative binding cooperativity between CEA and anti-CEA mAb with a dissociation constant of 6.82 × 10−10 M. The multifunctional nano-dBSA functionalization can confer a new function to graphene-like 2D nanomaterials and provide a promising bio-functionalization method for clinical application in biosensing, nanomedicine, and drug delivery.
Original language | English |
---|---|
Article number | 20 |
Journal | Nano-Micro Letters |
Volume | 11 |
Issue number | 1 |
DOIs | |
Publication status | Published - 9 Mar 2019 |
Total downloads
No data available