Plasma Interleukin-10 and Cholesterol Levels May Inform about Interdependences between Fitness and Fatness in Healthy Individuals
Research output: Contribution to journal › Article › peer-review
Standard Standard
In: International Journal of Environmental Research and Public Health, Vol. 18, No. 4, 1800, 12.02.2021.
Research output: Contribution to journal › Article › peer-review
HarvardHarvard
APA
CBE
MLA
VancouverVancouver
Author
RIS
TY - JOUR
T1 - Plasma Interleukin-10 and Cholesterol Levels May Inform about Interdependences between Fitness and Fatness in Healthy Individuals
AU - Sartor, Francesco
AU - Moore, Jonathan
AU - Kubis, Hans-Peter
PY - 2021/2/12
Y1 - 2021/2/12
N2 - Relationships between demographic, anthropometric, inflammatory, lipid and glucose tolerance markers in connection with the fat but fit paradigm were investigated by supervised and unsupervised learning. Data from 81 apparently healthy participants (87% females) were used to generate four classes of fatness and fitness. Principal Component Analysis (PCA) revealed that the principal component was preponderantly composed of glucose tolerance parameters. IL-10 and high-density lipoprotein, low-density lipoprotein (LDL), and total cholesterol, along with body mass index (BMI), were the most important features according to Random Forest based recursive feature elimination. Decision Tree classification showed that these play a key role into assigning each individual in one of the four classes, with 70% accuracy, and acceptable classification agreement, κ = 0.54. However, the best classifier with 88% accuracy and κ = 0.79 was the Naïve Bayes. LDL and BMI partially mediated the relationship between fitness and fatness. Although unsupervised learning showed that the glucose tolerance cluster explains the highest quote of the variance, supervised learning revealed that the importance of IL-10, cholesterol levels and BMI was greater than the glucose tolerance PCA cluster. These results suggest that fitness and fatness may be interconnected by anti-inflammatory responses and cholesterol levels. Randomized controlled trials are needed to confirm these preliminary outcomes.
AB - Relationships between demographic, anthropometric, inflammatory, lipid and glucose tolerance markers in connection with the fat but fit paradigm were investigated by supervised and unsupervised learning. Data from 81 apparently healthy participants (87% females) were used to generate four classes of fatness and fitness. Principal Component Analysis (PCA) revealed that the principal component was preponderantly composed of glucose tolerance parameters. IL-10 and high-density lipoprotein, low-density lipoprotein (LDL), and total cholesterol, along with body mass index (BMI), were the most important features according to Random Forest based recursive feature elimination. Decision Tree classification showed that these play a key role into assigning each individual in one of the four classes, with 70% accuracy, and acceptable classification agreement, κ = 0.54. However, the best classifier with 88% accuracy and κ = 0.79 was the Naïve Bayes. LDL and BMI partially mediated the relationship between fitness and fatness. Although unsupervised learning showed that the glucose tolerance cluster explains the highest quote of the variance, supervised learning revealed that the importance of IL-10, cholesterol levels and BMI was greater than the glucose tolerance PCA cluster. These results suggest that fitness and fatness may be interconnected by anti-inflammatory responses and cholesterol levels. Randomized controlled trials are needed to confirm these preliminary outcomes.
KW - PCA
KW - VO2max
KW - anti-inflammatory
KW - machine learning
U2 - 10.3390/ijerph18041800
DO - 10.3390/ijerph18041800
M3 - Article
VL - 18
JO - International Journal of Environmental Research and Public Health
JF - International Journal of Environmental Research and Public Health
SN - 1660-4601
IS - 4
M1 - 1800
ER -