Standard Standard

Plasma Interleukin-10 and Cholesterol Levels May Inform about Interdependences between Fitness and Fatness in Healthy Individuals. / Sartor, Francesco; Moore, Jonathan; Kubis, Hans-Peter.
In: International Journal of Environmental Research and Public Health, Vol. 18, No. 4, 1800, 12.02.2021.

Research output: Contribution to journalArticlepeer-review

HarvardHarvard

APA

CBE

MLA

VancouverVancouver

Sartor F, Moore J, Kubis HP. Plasma Interleukin-10 and Cholesterol Levels May Inform about Interdependences between Fitness and Fatness in Healthy Individuals. International Journal of Environmental Research and Public Health. 2021 Feb 12;18(4):1800. doi: 10.3390/ijerph18041800

Author

Sartor, Francesco ; Moore, Jonathan ; Kubis, Hans-Peter. / Plasma Interleukin-10 and Cholesterol Levels May Inform about Interdependences between Fitness and Fatness in Healthy Individuals. In: International Journal of Environmental Research and Public Health. 2021 ; Vol. 18, No. 4.

RIS

TY - JOUR

T1 - Plasma Interleukin-10 and Cholesterol Levels May Inform about Interdependences between Fitness and Fatness in Healthy Individuals

AU - Sartor, Francesco

AU - Moore, Jonathan

AU - Kubis, Hans-Peter

PY - 2021/2/12

Y1 - 2021/2/12

N2 - Relationships between demographic, anthropometric, inflammatory, lipid and glucose tolerance markers in connection with the fat but fit paradigm were investigated by supervised and unsupervised learning. Data from 81 apparently healthy participants (87% females) were used to generate four classes of fatness and fitness. Principal Component Analysis (PCA) revealed that the principal component was preponderantly composed of glucose tolerance parameters. IL-10 and high-density lipoprotein, low-density lipoprotein (LDL), and total cholesterol, along with body mass index (BMI), were the most important features according to Random Forest based recursive feature elimination. Decision Tree classification showed that these play a key role into assigning each individual in one of the four classes, with 70% accuracy, and acceptable classification agreement, κ = 0.54. However, the best classifier with 88% accuracy and κ = 0.79 was the Naïve Bayes. LDL and BMI partially mediated the relationship between fitness and fatness. Although unsupervised learning showed that the glucose tolerance cluster explains the highest quote of the variance, supervised learning revealed that the importance of IL-10, cholesterol levels and BMI was greater than the glucose tolerance PCA cluster. These results suggest that fitness and fatness may be interconnected by anti-inflammatory responses and cholesterol levels. Randomized controlled trials are needed to confirm these preliminary outcomes.

AB - Relationships between demographic, anthropometric, inflammatory, lipid and glucose tolerance markers in connection with the fat but fit paradigm were investigated by supervised and unsupervised learning. Data from 81 apparently healthy participants (87% females) were used to generate four classes of fatness and fitness. Principal Component Analysis (PCA) revealed that the principal component was preponderantly composed of glucose tolerance parameters. IL-10 and high-density lipoprotein, low-density lipoprotein (LDL), and total cholesterol, along with body mass index (BMI), were the most important features according to Random Forest based recursive feature elimination. Decision Tree classification showed that these play a key role into assigning each individual in one of the four classes, with 70% accuracy, and acceptable classification agreement, κ = 0.54. However, the best classifier with 88% accuracy and κ = 0.79 was the Naïve Bayes. LDL and BMI partially mediated the relationship between fitness and fatness. Although unsupervised learning showed that the glucose tolerance cluster explains the highest quote of the variance, supervised learning revealed that the importance of IL-10, cholesterol levels and BMI was greater than the glucose tolerance PCA cluster. These results suggest that fitness and fatness may be interconnected by anti-inflammatory responses and cholesterol levels. Randomized controlled trials are needed to confirm these preliminary outcomes.

KW - PCA

KW - VO2max

KW - anti-inflammatory

KW - machine learning

U2 - 10.3390/ijerph18041800

DO - 10.3390/ijerph18041800

M3 - Article

VL - 18

JO - International Journal of Environmental Research and Public Health

JF - International Journal of Environmental Research and Public Health

SN - 1660-4601

IS - 4

M1 - 1800

ER -