Quantifying citrate-enhanced phosphate root uptake using microdialysis

Research output: Contribution to journalArticle

Electronic versions



Organic acid exudation by plant roots is thought to promote phosphate (P) solubilisation and bioavailability in soils with poorly available nutrients. Here we describe a new combined experimental (microdialysis) and modelling approach to quantify citrate-enhanced P desorption and its importance for root P uptake.

To mimic the rhizosphere, microdialysis probes were placed in soil and perfused with citrate solutions (0.1, 1.0 and 10 mM) and the amount of P recovered from soil used to quantify rhizosphere P availability. Parameters in a mathematical model describing probe P uptake, citrate exudation, P movement and citrate-enhanced desorption were fit to the experimental data. These parameters were used in a model of a root which exuded citrate and absorbed P. The importance of soil citrate-P mobilisation for root P uptake was then quantified using this model.

A plant needs to exude citrate at a rate of 0.73 μmol cm−1 of root h−1 to see a significant increase in P absorption. Microdialysis probes with citrate in the perfusate were shown to absorb similar quantities of P to an exuding root.

A single root exuding citrate at a typical rate (4.3 × 10−5 μmol m−1 of root h−1) did not contribute significantly to P uptake. Microdialysis probes show promise for measuring rhizosphere processes when calibration experiments and mathematical modelling are used to decouple microdialysis and rhizosphere mechanisms.
Original languageEnglish
JournalPlant and Soil
Early online date5 Dec 2019
Publication statusE-pub ahead of print - 5 Dec 2019

Total downloads

No data available
View graph of relations