Rapidly expanding lake heatwaves under climate change

Research output: Contribution to journalArticlepeer-review

Electronic versions

Documents

DOI

Lake heatwaves—prolonged periods of hot surface water temperature in lakes—have recently been shown to increase in intensity and duration, with numerous potential implications for aquatic ecosystems. However, an important physical attribute of lake heatwaves that has not yet been investigated is their spatial extent, and how it varies within a warming world. Here, we show that the spatial extent of lake heatwaves, defined as contiguous regions within a lake that simultaneously experience extreme warm conditions, is increasing in the largest group of freshwater lakes on Earth, The Laurentian Great Lakes. We show that the maximum spatial extent of lake heatwaves is sensitive to inter-annual variations in winter ice cover and the timing of stratification onset in spring. Notably, we find that a lengthening of the warm summer season and, in turn, an overall increase in surface water temperature, stimulates the development of larger lake heatwaves. On average, our results suggest that the mean spatial extent of lake heatwaves has increased two-fold since 1995. We anticipate this rapid expansion of lake heatwaves to have widespread implications for heat-related impacts on aquatic species

Keywords

  • limnology, global warming, climate variability, extremes
Original languageEnglish
JournalEnvironmental Research Letters
Volume16
Issue number9
DOIs
Publication statusPublished - 18 Aug 2021

Total downloads

No data available
View graph of relations