Replanting of first‐cycle oil palm results in a second wave of biodiversity loss
Research output: Contribution to journal › Article › peer-review
Standard Standard
In: Ecology and Evolution, Vol. 9, No. 11, 06.2019, p. 6433-6443.
Research output: Contribution to journal › Article › peer-review
HarvardHarvard
APA
CBE
MLA
VancouverVancouver
Author
RIS
TY - JOUR
T1 - Replanting of first‐cycle oil palm results in a second wave of biodiversity loss
AU - Ashton-Butt, Adham
AU - Willcock, Simon
AU - Purnomo, Dedi
AU - Suhardi, null
AU - Aryawan, Anak A.K.
AU - Wahyuningsih, Resti
AU - Naim, Mohammad
AU - Poppy, Guy M.
AU - Caliman, Jean-Pierre
AU - Peh, Kelvin S-H.
AU - Snaddon, Jake L.
PY - 2019/6
Y1 - 2019/6
N2 - Conversion of forest to oil palm plantations results in a significant loss of biodiversity. Despite this, first‐cycle oil palm plantations can sustain relatively high biodiversity compared to other crops. However, the long‐term effects of oil palm agriculture on flora and fauna are unknown. Oil palm has a 25‐year commercial lifespan before it must be replanted, due to reduced productivity and difficulty of harvesting. Loss of the complex vegetation structure of oil palm plantations during the replanting process will likely have impacts on the ecosystem at a local and landscape scale. However, the effect of replanting on biodiversity is poorly understood.Here, we investigate the effects of replanting oil palm on soil macrofauna communities. We assessed ordinal richness, abundance, and community composition of soil macrofauna in first‐ (25‐ to 27‐year‐old) and second‐cycle oil palm (freshly cleared, 1‐year‐old, 3‐year‐old, and 7‐year‐old mature).Macrofauna abundance and richness drastically declined immediately after replanting. Macrofauna richness showed some recovery 7 years after replanting, but was still 19% lower than first‐cycle oil palm. Macrofauna abundance recovered to similar levels to that of first‐cycle oil palm plantations, 1 year after replanting. This was mainly due to high ant abundance, possibly due to the increased understory vegetation as herbicides are not used at this age. However, there were subsequent declines in macrofauna abundance 3 and 7 years after replanting, resulting in a 59% drop in macrofauna abundance compared to first‐cycle levels. Furthermore, soil macrofauna community composition in all ages of second‐cycle oil palm was different to first‐cycle plantations, with decomposers suffering particular declines.After considerable biodiversity loss due to forest conversion for oil palm, belowground invertebrate communities suffer a second wave of biodiversity loss due to replanting. This is likely to have serious implications for soil invertebrate diversity and agricultural sustainability in oil palm landscapes, due to the vital ecosystem functions that soil macrofauna provide.
AB - Conversion of forest to oil palm plantations results in a significant loss of biodiversity. Despite this, first‐cycle oil palm plantations can sustain relatively high biodiversity compared to other crops. However, the long‐term effects of oil palm agriculture on flora and fauna are unknown. Oil palm has a 25‐year commercial lifespan before it must be replanted, due to reduced productivity and difficulty of harvesting. Loss of the complex vegetation structure of oil palm plantations during the replanting process will likely have impacts on the ecosystem at a local and landscape scale. However, the effect of replanting on biodiversity is poorly understood.Here, we investigate the effects of replanting oil palm on soil macrofauna communities. We assessed ordinal richness, abundance, and community composition of soil macrofauna in first‐ (25‐ to 27‐year‐old) and second‐cycle oil palm (freshly cleared, 1‐year‐old, 3‐year‐old, and 7‐year‐old mature).Macrofauna abundance and richness drastically declined immediately after replanting. Macrofauna richness showed some recovery 7 years after replanting, but was still 19% lower than first‐cycle oil palm. Macrofauna abundance recovered to similar levels to that of first‐cycle oil palm plantations, 1 year after replanting. This was mainly due to high ant abundance, possibly due to the increased understory vegetation as herbicides are not used at this age. However, there were subsequent declines in macrofauna abundance 3 and 7 years after replanting, resulting in a 59% drop in macrofauna abundance compared to first‐cycle levels. Furthermore, soil macrofauna community composition in all ages of second‐cycle oil palm was different to first‐cycle plantations, with decomposers suffering particular declines.After considerable biodiversity loss due to forest conversion for oil palm, belowground invertebrate communities suffer a second wave of biodiversity loss due to replanting. This is likely to have serious implications for soil invertebrate diversity and agricultural sustainability in oil palm landscapes, due to the vital ecosystem functions that soil macrofauna provide.
KW - Agriculture
KW - belowground
KW - ecosystem function
KW - Invertebrate
KW - macrofauna
KW - soil
KW - Sustainability
U2 - 10.1002/ece3.5218
DO - 10.1002/ece3.5218
M3 - Article
C2 - 31236233
VL - 9
SP - 6433
EP - 6443
JO - Ecology and Evolution
JF - Ecology and Evolution
SN - 2045-7758
IS - 11
ER -