Solution of hydrogen in accident tolerant fuel candidate material: U3Si2

Research output: Contribution to journalArticlepeer-review

Standard Standard

Solution of hydrogen in accident tolerant fuel candidate material: U3Si2. / Middleburgh, S. C.; Claisse, A.; Andersson, D. A. et al.
In: Journal of Nuclear Materials, Vol. 501, 01.04.2018, p. 234-237.

Research output: Contribution to journalArticlepeer-review

HarvardHarvard

Middleburgh, SC, Claisse, A, Andersson, DA, Grimes, RW, Olsson, P & Maskova, S 2018, 'Solution of hydrogen in accident tolerant fuel candidate material: U3Si2', Journal of Nuclear Materials, vol. 501, pp. 234-237. https://doi.org/10.1016/j.jnucmat.2018.01.018

APA

Middleburgh, S. C., Claisse, A., Andersson, D. A., Grimes, R. W., Olsson, P., & Maskova, S. (2018). Solution of hydrogen in accident tolerant fuel candidate material: U3Si2. Journal of Nuclear Materials, 501, 234-237. https://doi.org/10.1016/j.jnucmat.2018.01.018

CBE

Middleburgh SC, Claisse A, Andersson DA, Grimes RW, Olsson P, Maskova S. 2018. Solution of hydrogen in accident tolerant fuel candidate material: U3Si2. Journal of Nuclear Materials. 501:234-237. https://doi.org/10.1016/j.jnucmat.2018.01.018

MLA

VancouverVancouver

Middleburgh SC, Claisse A, Andersson DA, Grimes RW, Olsson P, Maskova S. Solution of hydrogen in accident tolerant fuel candidate material: U3Si2. Journal of Nuclear Materials. 2018 Apr 1;501:234-237. Epub 2018 Jan 31. doi: 10.1016/j.jnucmat.2018.01.018

Author

Middleburgh, S. C. ; Claisse, A. ; Andersson, D. A. et al. / Solution of hydrogen in accident tolerant fuel candidate material: U3Si2. In: Journal of Nuclear Materials. 2018 ; Vol. 501. pp. 234-237.

RIS

TY - JOUR

T1 - Solution of hydrogen in accident tolerant fuel candidate material: U3Si2

AU - Middleburgh, S. C.

AU - Claisse, A.

AU - Andersson, D. A.

AU - Grimes, R. W.

AU - Olsson, P.

AU - Maskova, S.

PY - 2018/4/1

Y1 - 2018/4/1

N2 - Hydrogen uptake and accommodation into U3Si2, a candidate accident-tolerant fuel system, has been modelled on the atomic scale using the density functional theory. The solution energy of multiple H atoms is computed, reaching a stoichiometry of U3Si2H2 which has been experimentally observed in previous work (reported as U3Si2H1.8). The absorption of hydrogen is found to be favourable up to U3Si2H2 and the associated volume change is computed, closely matching experimental data. Entropic effects are considered to assess the dissociation temperature of H2, estimated to be at ∼800 K – again in good agreement with the experimentally observed transition temperature.

AB - Hydrogen uptake and accommodation into U3Si2, a candidate accident-tolerant fuel system, has been modelled on the atomic scale using the density functional theory. The solution energy of multiple H atoms is computed, reaching a stoichiometry of U3Si2H2 which has been experimentally observed in previous work (reported as U3Si2H1.8). The absorption of hydrogen is found to be favourable up to U3Si2H2 and the associated volume change is computed, closely matching experimental data. Entropic effects are considered to assess the dissociation temperature of H2, estimated to be at ∼800 K – again in good agreement with the experimentally observed transition temperature.

U2 - 10.1016/j.jnucmat.2018.01.018

DO - 10.1016/j.jnucmat.2018.01.018

M3 - Article

VL - 501

SP - 234

EP - 237

JO - Journal of Nuclear Materials

JF - Journal of Nuclear Materials

SN - 0022-3115

ER -