Electronic versions

  • Melissa Gaste Martinez
    University of Sao Paulo
  • Plinio Barbosa de Camargo
    University of Sao Paulo
  • Ana Maria Moura da Silva
    Butantan Institute, São Paulo, Brazil
  • Raimundo Cosme de Oliveira Junior
    Agroforestry Research Center for the Eastern Amazon
  • Hipocrates de Menzies Chalkidis
    Universidade da Amazônia
  • Alfredo Pedroso Dos Santos Junior
    Federal University of Western Pará, Brazil
  • Rosa Helena Veras Mourao
    Federal University of Western Pará, Brazil
  • Diana Rego Awazonas
    Butantan Institute, São Paulo, Brazil
  • Amin Soltangheisi
    University of Reading
  • Maria Gabriella da Silva Araujo
    University of Sao Paulo
  • Adibe Luiz Abdalla Filho
    University of Sao Paulo
  • Luiz Antonio Martinelli
    University of Sao Paulo
Since consumers reflect the isotopic composition of an assimilated diet, stable isotopes can be a useful tool to address the feeding ecology of tropical snakes. This is the first study reporting carbon and nitrogen stable isotopic composition of Bothrops atrox (Linnaeus, 1758) living in different landscapes located in the lower Amazon river, encompassing four main natural landscapes of the Amazon: old-growth forests, várzeas (flooded forests), savannas, and pastures. Our null hypothesis is that the δ13C of forest specimens of B.atrox is more negative because forests are dominated by C3 plants, while C4 plants are common in the other landscapes. On the other hand, δ15N of forest specimens should be more positive, since the δ15N of old-growth forests are higher than plants of savanna, várzea, and pastures. Confirming our hypothesis, the δ13C of B. atrox scales of the Tapajós National Forest was approximate −25‰ to −24‰, increased to approximately −23.5‰ to −23.0‰ in the savanna and pasture, and to −21‰ in the várzea, showing an increased contribution of C4-derived carbon. Some specimens of B. atrox had δ15N as high as 18‰, which is much higher than the average δ15N of the snake's prey (7‰), confirming the apex position of B. atrox in the Amazon region. The δ15N values of the forest specimens were 5‰ higher than the savanna specimens, and this difference decreased to 3‰ between the forest and the pasture, and the várzea specimens. Finally, there were not large differences between δ15N values of livers and scales in any of the landscapes, suggesting a constant diet through time, and reinforcing the possibility of the use of snake's scale as a less invasive and non-lethal tissue to analyze.
Original languageEnglish
Article numbere13325
Publication statusPublished - 22 Apr 2024
Externally publishedYes
View graph of relations