Stable organic static random access memory from a roll-to-roll compatible vacuum evaporation process
Research output: Contribution to journal › Article › peer-review
Standard Standard
In: Organic Electronics, Vol. 31, 20.01.2016, p. 77-81.
Research output: Contribution to journal › Article › peer-review
HarvardHarvard
APA
CBE
MLA
VancouverVancouver
Author
RIS
TY - JOUR
T1 - Stable organic static random access memory from a roll-to-roll compatible vacuum evaporation process
AU - Avila-Niño, J.A.
AU - Patchett, E.R.
AU - Taylor, D.M.
AU - Assender, H.E.
AU - Yeates, S.G.
AU - DIng, Z.
AU - Morrison, J.J.
PY - 2016/1/20
Y1 - 2016/1/20
N2 - An organic Static Random Access Memory (SRAM) based on p-type, six-transistor cells is demonstrated. The bottom-gate top-contact thin film transistors composing the memory were fabricated on flexible polyethylene naphthalate substrates. All metallization layers and the p-type semiconductor dinaphtho[2,3-b:2',3'-f] thieno[3,2-b]thiophene were deposited by thermal evaporation. The gate dielectric was deposited in a vacuum roll-to-roll environment at a web speed of 25 m/min by flash-evaporation and subsequent plasma polymerisation of tripropyleneglycol diacrylate (TPGDA). Buffering the TPGDA with a polystyrene layer yields hysteresis-free transistor characteristics with turn-on voltage close to zero. The static transfer characteristic of diode-connected load inverters were also hysteresis-free with maximum gain >2 and noise margin ∼2.5 V. When incorporated into SRAM cells the time-constant for writing data into individual SRAM cells was less than 0.4 ms. Little change occurred in the magnitude of the stored voltages, when the SRAM was powered continuously from a −40 V rail for over 27 h testifying to the electrical stability of the threshold voltage of the individual transistors. Unencapsulated SRAM cells measured two months after fabrication showed no significant degradation after storage in a clear plastic container in normal laboratory ambient.
AB - An organic Static Random Access Memory (SRAM) based on p-type, six-transistor cells is demonstrated. The bottom-gate top-contact thin film transistors composing the memory were fabricated on flexible polyethylene naphthalate substrates. All metallization layers and the p-type semiconductor dinaphtho[2,3-b:2',3'-f] thieno[3,2-b]thiophene were deposited by thermal evaporation. The gate dielectric was deposited in a vacuum roll-to-roll environment at a web speed of 25 m/min by flash-evaporation and subsequent plasma polymerisation of tripropyleneglycol diacrylate (TPGDA). Buffering the TPGDA with a polystyrene layer yields hysteresis-free transistor characteristics with turn-on voltage close to zero. The static transfer characteristic of diode-connected load inverters were also hysteresis-free with maximum gain >2 and noise margin ∼2.5 V. When incorporated into SRAM cells the time-constant for writing data into individual SRAM cells was less than 0.4 ms. Little change occurred in the magnitude of the stored voltages, when the SRAM was powered continuously from a −40 V rail for over 27 h testifying to the electrical stability of the threshold voltage of the individual transistors. Unencapsulated SRAM cells measured two months after fabrication showed no significant degradation after storage in a clear plastic container in normal laboratory ambient.
U2 - 10.1016/j.orgel.2016.01.017
DO - 10.1016/j.orgel.2016.01.017
M3 - Article
VL - 31
SP - 77
EP - 81
JO - Organic Electronics
JF - Organic Electronics
SN - 1566-1199
ER -