Surface dependent segregation of Y2O3 in t-ZrO2

Research output: Contribution to journalArticlepeer-review

Electronic versions

  • CR Stanek
  • RW Grimes
  • MJD Rushton
    Imperial College London
  • KJ McClellan
  • RD Rawlings
Atomistic simulation techniques have been used to predict the preferential segregation of Y3+ ions to the (100), (101) and (110) surfaces of tetragonal zirconia (t-ZrO2). It is found that segregation energetics vary greatly between surfaces. In particular, dopant ions segregate to the top of the (101) surface. Conversely, although they also segregate towards the (100) and (110) surfaces, Y3+ becomes trapped just beneath these surfaces. For all of these surfaces, segregation effects are negligible below 12 angstrom. The surface orientation dependence will result in significant variations in the concentration of yttrium at different surfaces. As a consequence, properties that are a function of defect concentration and distribution will be surface dependent. Predictive understanding of such segregation effects will provide the possibility of better engineered devices for a variety of thermal and electrochemical applications.
Original languageUnknown
Pages (from-to)445-453
Number of pages9
JournalPhilosophical Magazine Letters
Volume85
Issue number9
DOIs
Publication statusPublished - 1 Sept 2005
Externally publishedYes
View graph of relations