Electronic versions

Documents

DOI

  • Gehan Mousa
    Benha University
  • Elsayed Elamir
    University of Bahrain
  • Khaled Hussainey
    University of Portsmouth
This paper contributes to accounting literature by reexamining the impact of the quantity and readability of annual report narratives on cost of capital. This study employs a machine learning technique, namely, the model-based (MOB) recursive partitioning, while the least absolute shrinkage and selection operator is used to select variables from a sample of 720 bank–year observations from eight Middle Eastern and North African countries between 2008 and 2019. The model-based (MOB) recursive partitioning works with local and global models to explore hidden information in the data that leads to better results in both linear and nonlinear relationships. Our analysis shows that, on one hand, the readability of annual report narratives has an insignificant impact on cost of capital. On the other hand, it shows that the greater the amount of narrative disclosure, the lower the cost of capital, a result that varies between countries and according to corporate profitability.
Original languageEnglish
Article number101675
JournalResearch in International Business and Finance
Volume62
Early online date13 May 2022
DOIs
Publication statusPublished - 1 Dec 2022
Externally publishedYes

Total downloads

No data available
View graph of relations