The Effect of Clay Type on the Properties of Cohesive Sediment Gravity Flows and their Deposits

Research output: Contribution to journalArticlepeer-review

Electronic versions

Documents

DOI

The present knowledge of cohesive clay-laden sediment gravity flows (SGFs) and their deposits is limited, despite clay being one of the most abundant sediment types on earth and subaqueous SGFs transporting large volumes of sediment into the ocean. Lock-exchange experiments were conducted to contrast SGFs laden with non-cohesive silica flour, weakly cohesive kaolinite, and strongly cohesive bentonite in terms of flow behavior, head velocity, run-out distance, and deposit geometry across a wide range of suspended sediment concentrations.
The three sediment types shared similar trends in the types of flows they developed, the maximum head velocity of the flows, and the deposit shape. As suspended sediment concentration was increased, the flow type changed from low-density turbidity current (LDTC) via high-density turbidity current (HDTC) and mud flow to slide. As a function of increasing flow density the maximum head velocity of LDTCs and relatively dilute HDTCs increased, whereas the maximum head velocity of the mud flows, slides, and relatively dense HDTCs decreased. The increase in maximum head velocity was driven by turbulent support of the suspended sediment and the density difference between the flow and the ambient fluid. The decrease in maximum head velocity comprised attenuation of turbulence by grain-to-grain frictional forces within the silica flour flows and by pervasive cohesive forces within the kaolinite and bentonite flows. The silica flour flows changed from turbulence-driven to friction-driven at a volumetric concentration of 47% and a maximum head velocity of 0.75 m s−1; the thresholds between turbulence-driven to cohesion-driven flow for kaolinite and bentonite were 22% and 0.50 m s−1, and 16% and 0.37 m s−1, respectively. The HDTCs produced deposits that were wedge-shaped with a block-shaped downflow extension, the mud flows produced wedge-shaped deposits with partly or fully detached outrunner blocks, and the slides produced wedge-shaped deposits without extension. For the mud flows, slides, and most HDTCs, an increasingly higher concentration was needed to produce similar maximum head velocities and run-out distances for flows carrying bentonite, kaolinite and silica flour, respectively. The strongly cohesive bentonite flows were able to create a stronger network of particle bonds than the weakly cohesive kaolinite flows of similar concentration. The silica flour flows remained mobile up to an extremely high concentration of 52%, and frictional forces were only able to counteract the excess density of the flows, and attenuate the turbulence within these flows, at concentrations above 47%. Dimensional analysis of the experimental data shows that the yield stress of the pre-failure suspension can be used to predict the run-out distance and the dimensionless head velocity of the SGFs, independent of clay type. Extrapolation to the natural environment suggests that high-density SGFs laden with weakly cohesive clay reach a greater distance from their origin than flows that carrystrongly cohesive clay at a similar suspended sediment concentration, whilst equivalent fine-grained, non-cohesive SGFs travel the furthest. The contrasting behavior of fine-grained SGFs laden with different clay minerals may extend to differences in architecture of large-scale sediment bodies within deep marine systems.

Keywords

  • Clay, Flume , Sediment Gravity Flow, Cohesion, Yield Stress
Original languageEnglish
Pages (from-to)1176-1195
Number of pages59
JournalJournal of Sedimentary Research
Volume87
Issue number11
Early online date21 Nov 2017
DOIs
Publication statusPublished - 2017

Total downloads

No data available
View graph of relations