The Multilingual Picture Database

Research output: Contribution to journalArticlepeer-review

Standard Standard

The Multilingual Picture Database. / Duñabeitia, Jon Andoni; Baciero, Ana; Antoniou, Kyriakos et al.
In: Scientific data, Vol. 9, No. 1, 431, 21.07.2022.

Research output: Contribution to journalArticlepeer-review

HarvardHarvard

Duñabeitia, JA, Baciero, A, Antoniou, K, Antoniou, M, Ataman, E, Baus, C, Ben-Shachar, M, Can Çağlar, O, Kirkici, B, Chromý, J, Comesaña, M, Filip, M, Filipović Đurđević, D, Gillon Dowens, M, Hatzidaki, A, Januška, J, Jusoh, Z, Kanj, R, Kim, SY, Leminen, A, Lohndal, T, Thai Yap, N, Renvall, H, Rothman, J, Royle, P, Santesteban, M, Sevilla, Y, Slioussar, N, Vaughan-Evans, A, Wodniecka, Z, Wulff, S & Pliatsikas, C 2022, 'The Multilingual Picture Database', Scientific data, vol. 9, no. 1, 431. https://doi.org/10.1038/s41597-022-01552-7

APA

Duñabeitia, J. A., Baciero, A., Antoniou, K., Antoniou, M., Ataman, E., Baus, C., Ben-Shachar, M., Can Çağlar, O., Kirkici, B., Chromý, J., Comesaña, M., Filip, M., Filipović Đurđević, D., Gillon Dowens, M., Hatzidaki, A., Januška, J., Jusoh, Z., Kanj, R., Kim, S. Y., ... Pliatsikas, C. (2022). The Multilingual Picture Database. Scientific data, 9(1), Article 431. https://doi.org/10.1038/s41597-022-01552-7

CBE

Duñabeitia JA, Baciero A, Antoniou K, Antoniou M, Ataman E, Baus C, Ben-Shachar M, Can Çağlar O, Kirkici B, Chromý J, et al. 2022. The Multilingual Picture Database. Scientific data. 9(1):Article 431. https://doi.org/10.1038/s41597-022-01552-7

MLA

Duñabeitia, Jon Andoni et al. "The Multilingual Picture Database". Scientific data. 2022. 9(1). https://doi.org/10.1038/s41597-022-01552-7

VancouverVancouver

Duñabeitia JA, Baciero A, Antoniou K, Antoniou M, Ataman E, Baus C et al. The Multilingual Picture Database. Scientific data. 2022 Jul 21;9(1):431. doi: 10.1038/s41597-022-01552-7

Author

Duñabeitia, Jon Andoni ; Baciero, Ana ; Antoniou, Kyriakos et al. / The Multilingual Picture Database. In: Scientific data. 2022 ; Vol. 9, No. 1.

RIS

TY - JOUR

T1 - The Multilingual Picture Database

AU - Duñabeitia, Jon Andoni

AU - Baciero, Ana

AU - Antoniou, Kyriakos

AU - Antoniou, Mark

AU - Ataman, Esra

AU - Baus, Cristina

AU - Ben-Shachar, Michal

AU - Can Çağlar, Ozan

AU - Kirkici, Bilal

AU - Chromý, Jan

AU - Comesaña, Montserrat

AU - Filip, Maroš

AU - Filipović Đurđević, Dušica

AU - Gillon Dowens, Margaret

AU - Hatzidaki, Anna

AU - Januška, Jiří

AU - Jusoh, Zuraini

AU - Kanj, Rama

AU - Kim, Say Young

AU - Leminen, Alina

AU - Lohndal, Terje

AU - Thai Yap, Ngee

AU - Renvall, Hanna

AU - Rothman, Jason

AU - Royle, Phaedra

AU - Santesteban, Mikel

AU - Sevilla, Yamila

AU - Slioussar, Natalia

AU - Vaughan-Evans, Awel

AU - Wodniecka, Zofia

AU - Wulff, Stefanie

AU - Pliatsikas, Christos

N1 - © 2022. The Author(s).

PY - 2022/7/21

Y1 - 2022/7/21

N2 - The growing interdisciplinary research field of psycholinguistics is in constant need of new and up-to-date tools which will allow researchers to answer complex questions, but also expand on languages other than English, which dominates the field. One type of such tools are picture datasets which provide naming norms for everyday objects. However, existing databases tend to be small in terms of the number of items they include, and have also been normed in a limited number of languages, despite the recent boom in multilingualism research. In this paper we present the Multilingual Picture (Multipic) database, containing naming norms and familiarity scores for 500 coloured pictures, in thirty-two languages or language varieties from around the world. The data was validated with standard methods that have been used for existing picture datasets. This is the first dataset to provide naming norms, and translation equivalents, for such a variety of languages; as such, it will be of particular value to psycholinguists and other interested researchers. The dataset has been made freely available.

AB - The growing interdisciplinary research field of psycholinguistics is in constant need of new and up-to-date tools which will allow researchers to answer complex questions, but also expand on languages other than English, which dominates the field. One type of such tools are picture datasets which provide naming norms for everyday objects. However, existing databases tend to be small in terms of the number of items they include, and have also been normed in a limited number of languages, despite the recent boom in multilingualism research. In this paper we present the Multilingual Picture (Multipic) database, containing naming norms and familiarity scores for 500 coloured pictures, in thirty-two languages or language varieties from around the world. The data was validated with standard methods that have been used for existing picture datasets. This is the first dataset to provide naming norms, and translation equivalents, for such a variety of languages; as such, it will be of particular value to psycholinguists and other interested researchers. The dataset has been made freely available.

U2 - 10.1038/s41597-022-01552-7

DO - 10.1038/s41597-022-01552-7

M3 - Article

C2 - 35864133

VL - 9

JO - Scientific data

JF - Scientific data

SN - 2052-4463

IS - 1

M1 - 431

ER -