Thermophysical properties and oxygen transport in the (U-x,Pu1-x)O-2 lattice
Research output: Contribution to journal › Article › peer-review
Standard Standard
In: Journal of Nuclear Materials, Vol. 461, 01.06.2015, p. 206-214.
Research output: Contribution to journal › Article › peer-review
HarvardHarvard
APA
CBE
MLA
VancouverVancouver
Author
RIS
TY - JOUR
T1 - Thermophysical properties and oxygen transport in the (U-x,Pu1-x)O-2 lattice
AU - Cooper, M. W. D.
AU - Murphy, S. T.
AU - Rushton, M. J. D.
AU - Grimes, R. W.
PY - 2015/6/1
Y1 - 2015/6/1
N2 - Using molecular dynamics, the thermophysical properties of the (U-x,Pu1-x)O-2 system have been investigated between 300 and 3200 K. The variation with temperature of lattice parameter, linear thermal expansion coefficient, enthalpy and specific heat at constant pressure, are explained in terms of defect formation and diffusivity on the oxygen sublattice. Vegard's Law is approximately observed for the thermal expansion of the solid solutions below 2000 K. Deviation from Vegard's Law above this temperature occurs due to the different superionic transition temperatures of the solid solutions (2200-2900 K). Similarly, a spike in the specific heat, associated with the superionic transition, occurs at lower temperatures in solid solutions that have a high Pu content. While oxygen diffusivity is higher in pure PuO2 than in pure UO2, lower oxygen defect enthalpies in (U-x,Pu1-x)O-2 solid solutions cause higher oxygen mobility than would be expected by interpolation between the diffusivities of the end members. In comparison to UO2 and PuO2 there is considerable variety of oxygen vacancy and oxygen interstitial sites in solid solutions generating a wide range of property values. Trends in the defect enthalpies are discussed in terms of composition and the lattice parameter of (U-x,Pu1-x)O-2. Comparison is made with previous work on (U-x,Th1-x)O-2. (C) 2015 Elsevier B.V. All rights reserved.
AB - Using molecular dynamics, the thermophysical properties of the (U-x,Pu1-x)O-2 system have been investigated between 300 and 3200 K. The variation with temperature of lattice parameter, linear thermal expansion coefficient, enthalpy and specific heat at constant pressure, are explained in terms of defect formation and diffusivity on the oxygen sublattice. Vegard's Law is approximately observed for the thermal expansion of the solid solutions below 2000 K. Deviation from Vegard's Law above this temperature occurs due to the different superionic transition temperatures of the solid solutions (2200-2900 K). Similarly, a spike in the specific heat, associated with the superionic transition, occurs at lower temperatures in solid solutions that have a high Pu content. While oxygen diffusivity is higher in pure PuO2 than in pure UO2, lower oxygen defect enthalpies in (U-x,Pu1-x)O-2 solid solutions cause higher oxygen mobility than would be expected by interpolation between the diffusivities of the end members. In comparison to UO2 and PuO2 there is considerable variety of oxygen vacancy and oxygen interstitial sites in solid solutions generating a wide range of property values. Trends in the defect enthalpies are discussed in terms of composition and the lattice parameter of (U-x,Pu1-x)O-2. Comparison is made with previous work on (U-x,Th1-x)O-2. (C) 2015 Elsevier B.V. All rights reserved.
U2 - 10.1016/j.jnucmat.2015.03.024
DO - 10.1016/j.jnucmat.2015.03.024
M3 - Erthygl
VL - 461
SP - 206
EP - 214
JO - Journal of Nuclear Materials
JF - Journal of Nuclear Materials
SN - 0022-3115
ER -