Unmasking intraspecific variation in offspring responses to multiple environmental drivers
Research output: Contribution to journal › Article › peer-review
Electronic versions
Documents
- Spitzner et al - revised
Accepted author manuscript, 1 MB, PDF document
- Spitzner et al - supplementary material
Accepted author manuscript, 468 KB, PDF document
DOI
Understanding organismal responses to environmental drivers is relevant to predict species capacities to respond to climate change. However, the scarce information available on intraspecific variation in the responses oversimplifies our view of the actual species capacities. We studied intraspecific variation in survival and larval development of a marine coastal invertebrate (shore crab Carcinus maenas) in response to two key environmental drivers (temperature and salinity) characterising coastal habitats. On average, survival of early larval stages (up to zoea IV) exhibited an antagonistic response by which negative effects of low salinity were mitigated at increased temperatures. Such response would be adaptive for species inhabiting coastal regions of freshwater influence under summer conditions and moderate warming. Average responses of developmental time were also antagonistic and may be categorised as a form of thermal mitigation of osmotic stress. The capacity for thermal mitigation of low-salinity stress varied among larvae produced by different females. For survival in particular, deviations did not only consist of variations in the magnitude of the mitigation effect; instead, the range of responses varied from strong effects to no effects of salinity across the thermal range tested. Quantifying intraspecific variation of such capacity is a critical step in understanding responses to climate change: it points towards either an important potential for selection or a critical role of environmental change, operating in the parental environment and leading to stress responses in larvae.
Original language | English |
---|---|
Article number | 112 |
Journal | Marine Biology |
Volume | 166 |
Issue number | 8 |
Early online date | 25 Jul 2019 |
DOIs | |
Publication status | Published - 1 Aug 2019 |
Total downloads
No data available