Widespread convergence in toxin resistance by predictable molecular evolution

Research output: Contribution to journalArticle

Standard Standard

Widespread convergence in toxin resistance by predictable molecular evolution. / Wuster, W.; Ujvari, B.; Casewell, N.R.; Sunagar, K.; Arbuckle, K.; Wüster, W.; Lo, N.; O'Meally, D.; Beckmann, C.; King, G.F.; Deplazes, E.; Madsen, T.

In: Proceedings of the National Academy of Sciences of the USA, Vol. 112, No. 38, 22.09.2015, p. 11911-11916.

Research output: Contribution to journalArticle

HarvardHarvard

Wuster, W, Ujvari, B, Casewell, NR, Sunagar, K, Arbuckle, K, Wüster, W, Lo, N, O'Meally, D, Beckmann, C, King, GF, Deplazes, E & Madsen, T 2015, 'Widespread convergence in toxin resistance by predictable molecular evolution', Proceedings of the National Academy of Sciences of the USA, vol. 112, no. 38, pp. 11911-11916. https://doi.org/10.1073/pnas.1511706112

APA

Wuster, W., Ujvari, B., Casewell, N. R., Sunagar, K., Arbuckle, K., Wüster, W., Lo, N., O'Meally, D., Beckmann, C., King, G. F., Deplazes, E., & Madsen, T. (2015). Widespread convergence in toxin resistance by predictable molecular evolution. Proceedings of the National Academy of Sciences of the USA, 112(38), 11911-11916. https://doi.org/10.1073/pnas.1511706112

CBE

Wuster W, Ujvari B, Casewell NR, Sunagar K, Arbuckle K, Wüster W, Lo N, O'Meally D, Beckmann C, King GF, Deplazes E, Madsen T. 2015. Widespread convergence in toxin resistance by predictable molecular evolution. Proceedings of the National Academy of Sciences of the USA. 112(38):11911-11916. https://doi.org/10.1073/pnas.1511706112

MLA

Wuster, W. et al. "Widespread convergence in toxin resistance by predictable molecular evolution". Proceedings of the National Academy of Sciences of the USA. 2015, 112(38). 11911-11916. https://doi.org/10.1073/pnas.1511706112

VancouverVancouver

Wuster W, Ujvari B, Casewell NR, Sunagar K, Arbuckle K, Wüster W et al. Widespread convergence in toxin resistance by predictable molecular evolution. Proceedings of the National Academy of Sciences of the USA. 2015 Sep 22;112(38):11911-11916. https://doi.org/10.1073/pnas.1511706112

Author

Wuster, W. ; Ujvari, B. ; Casewell, N.R. ; Sunagar, K. ; Arbuckle, K. ; Wüster, W. ; Lo, N. ; O'Meally, D. ; Beckmann, C. ; King, G.F. ; Deplazes, E. ; Madsen, T. / Widespread convergence in toxin resistance by predictable molecular evolution. In: Proceedings of the National Academy of Sciences of the USA. 2015 ; Vol. 112, No. 38. pp. 11911-11916.

RIS

TY - JOUR

T1 - Widespread convergence in toxin resistance by predictable molecular evolution

AU - Wuster, W.

AU - Ujvari, B.

AU - Casewell, N.R.

AU - Sunagar, K.

AU - Arbuckle, K.

AU - Wüster, W.

AU - Lo, N.

AU - O'Meally, D.

AU - Beckmann, C.

AU - King, G.F.

AU - Deplazes, E.

AU - Madsen, T.

PY - 2015/9/22

Y1 - 2015/9/22

N2 - The question about whether evolution is unpredictable and stochastic or intermittently constrained along predictable pathways is the subject of a fundamental debate in biology, in which understanding convergent evolution plays a central role. At the molecular level, documented examples of convergence are rare and limited to occurring within specific taxonomic groups. Here we provide evidence of constrained convergent molecular evolution across the metazoan tree of life. We show that resistance to toxic cardiac glycosides produced by plants and bufonid toads is mediated by similar molecular changes to the sodium-potassium-pump (Na+/K+-ATPase) in insects, amphibians, reptiles, and mammals. In toad-feeding reptiles, resistance is conferred by two point mutations that have evolved convergently on four occasions, whereas evidence of a molecular reversal back to the susceptible state in varanid lizards migrating to toad-free areas suggests that toxin resistance is maladaptive in the absence of selection. Importantly, resistance in all taxa is mediated by replacements of 2 of the 12 amino acids comprising the Na+/K+-ATPase H1–H2 extracellular domain that constitutes a core part of the cardiac glycoside binding site. We provide mechanistic insight into the basis of resistance by showing that these alterations perturb the interaction between the cardiac glycoside bufalin and the Na+/K+-ATPase. Thus, similar selection pressures have resulted in convergent evolution of the same molecular solution across the breadth of the animal kingdom, demonstrating how a scarcity of possible solutions to a selective challenge can lead to highly predictable evolutionary responses.

AB - The question about whether evolution is unpredictable and stochastic or intermittently constrained along predictable pathways is the subject of a fundamental debate in biology, in which understanding convergent evolution plays a central role. At the molecular level, documented examples of convergence are rare and limited to occurring within specific taxonomic groups. Here we provide evidence of constrained convergent molecular evolution across the metazoan tree of life. We show that resistance to toxic cardiac glycosides produced by plants and bufonid toads is mediated by similar molecular changes to the sodium-potassium-pump (Na+/K+-ATPase) in insects, amphibians, reptiles, and mammals. In toad-feeding reptiles, resistance is conferred by two point mutations that have evolved convergently on four occasions, whereas evidence of a molecular reversal back to the susceptible state in varanid lizards migrating to toad-free areas suggests that toxin resistance is maladaptive in the absence of selection. Importantly, resistance in all taxa is mediated by replacements of 2 of the 12 amino acids comprising the Na+/K+-ATPase H1–H2 extracellular domain that constitutes a core part of the cardiac glycoside binding site. We provide mechanistic insight into the basis of resistance by showing that these alterations perturb the interaction between the cardiac glycoside bufalin and the Na+/K+-ATPase. Thus, similar selection pressures have resulted in convergent evolution of the same molecular solution across the breadth of the animal kingdom, demonstrating how a scarcity of possible solutions to a selective challenge can lead to highly predictable evolutionary responses.

UR - https://www.pnas.org/content/112/38/11911/tab-figures-data

U2 - 10.1073/pnas.1511706112

DO - 10.1073/pnas.1511706112

M3 - Article

VL - 112

SP - 11911

EP - 11916

JO - Proceedings of the National Academy of Sciences of the USA

JF - Proceedings of the National Academy of Sciences of the USA

SN - 0027-8424

IS - 38

ER -