Fersiynau electronig

Dogfennau

Dangosydd eitem ddigidol (DOI)

  • E.R. Patchett
  • E.F. Patchett
  • A. Williams
  • Z. Ding
  • G. Abbas
  • H.E. Assender
  • J.J. Morrison
  • S.G. Yeates
  • D.M. Taylor
Advances are described in a vacuum-evaporation-based approach for the roll-to-roll (R2R) production of organic thin film transistors (TFTs) and circuits. Results from 90-transistor arrays formed directly onto a plasma-polymerised diacrylate gate dielectric are compared with those formed on polystyrene-buffered diacrylate. The latter approach resulted in stable, reproducible transistors with yields in excess of 90%. The resulting TFTs had low turn-on voltage, on–off ratios ∼106 and mobility ∼1 cm2/V s in the linear regime, as expected for dinaphtho[2,3-b:2′,3′-f] thieno[3,2-b]thiophene the air stable small molecule used as the active semiconductor. We show that when device design is constrained by the generally poor registration ability of R2R processes, parasitic source–drain currents can lead to a >50% increase in the mobility extracted from the resulting TFTs, the increases being especially marked in low channel width devices. Batches of 27 saturated-load inverters were fabricated with 100% yield and their behaviour successfully reproduced using TFT parameters extracted with Silvaco’s UOTFT Model. 5- and 7-stage ring oscillator (RO) outputs ranged from ∼120 Hz to >2 kHz with rail voltages, VDD, increasing from −15 V to −90 V. From simulations an order of magnitude increase in frequency could be expected by reducing parasitic gate capacitances. During 8 h of continuous operation at VDD = −60 V, the frequency of a 7-stage RO remained almost constant at ∼1.4 kHz albeit that the output signal amplitude decreased from ∼22 V to ∼10 V. Over the next 30 days of intermittent operation further degradation in performance occurred although an unused RO showed no deterioration over the same period.
Iaith wreiddiolSaesneg
Tudalennau (o-i)1493-1502
CyfnodolynOrganic Electronics
Cyfrol15
Rhif y cyfnodolyn7
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 24 Ebr 2014

Cyfanswm lawlrlwytho

Nid oes data ar gael
Gweld graff cysylltiadau