Asynchronous carbon sink saturation in African and Amazonian tropical forests
Allbwn ymchwil: Cyfraniad at gyfnodolyn › Erthygl › adolygiad gan gymheiriaid
StandardStandard
Yn: Nature, Cyfrol 579, Rhif 7797, 05.03.2020, t. 80-87.
Allbwn ymchwil: Cyfraniad at gyfnodolyn › Erthygl › adolygiad gan gymheiriaid
HarvardHarvard
APA
CBE
MLA
VancouverVancouver
Author
RIS
TY - JOUR
T1 - Asynchronous carbon sink saturation in African and Amazonian tropical forests
AU - Hubau, Wannes
AU - Lewis, Simon L
AU - Phillips, Oliver L
AU - Affum-Baffoe, Kofi
AU - Beeckman, Hans
AU - Cuní-Sanchez, Aida
AU - Daniels, Armandu K
AU - Ewango, Corneille E N
AU - Fauset, Sophie
AU - Mukinzi, Jacques M
AU - Sheil, Douglas
AU - Sonké, Bonaventure
AU - Sullivan, Martin J P
AU - Sunderland, Terry C H
AU - Taedoumg, Hermann
AU - Thomas, Sean C
AU - White, Lee J T
AU - Abernethy, Katharine A
AU - Adu-Bredu, Stephen
AU - Amani, Christian A
AU - Baker, Timothy R
AU - Banin, Lindsay F
AU - Baya, Fidèle
AU - Begne, Serge K
AU - Bennett, Amy C
AU - Benedet, Fabrice
AU - Bitariho, Robert
AU - Bocko, Yannick E
AU - Boeckx, Pascal
AU - Boundja, Patrick
AU - Brienen, Roel J W
AU - Brncic, Terry
AU - Chezeaux, Eric
AU - Chuyong, George B
AU - Clark, Connie J
AU - Collins, Murray
AU - Comiskey, James A
AU - Coomes, David A
AU - Dargie, Greta C
AU - de Haulleville, Thales
AU - Kamdem, Marie Noel Djuikouo
AU - Doucet, Jean-Louis
AU - Esquivel-Muelbert, Adriane
AU - Feldpausch, Ted R
AU - Fofanah, Alusine
AU - Foli, Ernest G
AU - Gilpin, Martin
AU - Gloor, Emanuel
AU - Gonmadje, Christelle
AU - Gourlet-Fleury, Sylvie
AU - Hall, Jefferson S
AU - Hamilton, Alan C
AU - Harris, David J
AU - Hart, Terese B
AU - Hockemba, Mireille B N
AU - Hladik, Annette
AU - Ifo, Suspense A
AU - Jeffery, Kathryn J
AU - Jucker, Tommaso
AU - Yakusu, Emmanuel Kasongo
AU - Kearsley, Elizabeth
AU - Kenfack, David
AU - Koch, Alexander
AU - Leal, Miguel E
AU - Levesley, Aurora
AU - Lindsell, Jeremy A
AU - Lisingo, Janvier
AU - Lopez-Gonzalez, Gabriela
AU - Lovett, Jon C
AU - Makana, Jean-Remy
AU - Malhi, Yadvinder
AU - Marshall, Andrew R
AU - Martin, Jim
AU - Martin, Emanuel H
AU - Mbayu, Faustin M
AU - Medjibe, Vincent P
AU - Mihindou, Vianet
AU - Mitchard, Edward T A
AU - Moore, Sam
AU - Munishi, Pantaleo K T
AU - Bengone, Natacha Nssi
AU - Ojo, Lucas
AU - Ondo, Fidèle Evouna
AU - Peh, Kelvin S-H
AU - Pickavance, Georgia C
AU - Poulsen, Axel Dalberg
AU - Poulsen, John R
AU - Qie, Lan
AU - Reitsma, Jan
AU - Rovero, Francesco
AU - Swaine, Michael D
AU - Talbot, Joey
AU - Taplin, James
AU - Taylor, David M
AU - Thomas, Duncan W
AU - Toirambe, Benjamin
AU - Mukendi, John Tshibamba
AU - Tuagben, Darlington
AU - Umunay, Peter M
AU - van der Heijden, Geertje M F
AU - Verbeeck, Hans
AU - Vleminckx, Jason
AU - Willcock, Simon
AU - Wöll, Hannsjörg
AU - Woods, John T
AU - Zemagho, Lise
PY - 2020/3/5
Y1 - 2020/3/5
N2 - Structurally intact tropical forests sequestered ~50% of global terrestrial carbon uptake over the 1990s and early 2000s, removing ~15% of anthropogenic CO2 emissions1-3. Climate-driven vegetation models typically predict that this tropical forest ‘carbon sink’ will continue for decades4,5. Here, we assess trends in the carbon sink using 244 structurally intact African tropical forests spanning 11 countries, we compare them with 321 published plots from Amazonia and investigate the underlying drivers of the trends. The carbon sink in live aboveground biomass in intact African tropical forests has been stable for the three decades to 2015, at 0.66 Mg C ha-1 yr-1 (95% CI:0.53-0.79), in contrast to the long-term decline in Amazonian forests6. Thus, the carbon sink responses of Earth’s two largest expanses of tropical forest have diverged. The difference is largely driven by carbon losses from tree mortality, with no detectable multi-decadal trend in Africa and a long-term increase in Amazonia. Both continents show increasing tree growth, consistent with the expected net effect of rising atmospheric CO2 and air temperature7-9. Despite the past stability of the African carbon sink, our data suggest a post-2010 increase in carbon losses, delayed compared to Amazonia, indicating asynchronous carbon sink saturation on the two continents. A statistical model including CO2, temperature, drought and forest dynamics accounts for the observed trends and indicates a long-term future decline in the African sink, while the Amazonian sink continues to rapidly weaken. Overall, the uptake of carbon into Earth’s intact tropical forests peaked in the 1990s. Given that the global terrestrial carbon sink is increasing in size, observations indicating greater recent carbon uptake into the Northern hemisphere landmass10 reinforce our conclusion that the intact tropical forest carbon sink has already saturated. This tropical forest sink saturation and ongoing decline has consequences for policies to stabilise Earth’s climate.
AB - Structurally intact tropical forests sequestered ~50% of global terrestrial carbon uptake over the 1990s and early 2000s, removing ~15% of anthropogenic CO2 emissions1-3. Climate-driven vegetation models typically predict that this tropical forest ‘carbon sink’ will continue for decades4,5. Here, we assess trends in the carbon sink using 244 structurally intact African tropical forests spanning 11 countries, we compare them with 321 published plots from Amazonia and investigate the underlying drivers of the trends. The carbon sink in live aboveground biomass in intact African tropical forests has been stable for the three decades to 2015, at 0.66 Mg C ha-1 yr-1 (95% CI:0.53-0.79), in contrast to the long-term decline in Amazonian forests6. Thus, the carbon sink responses of Earth’s two largest expanses of tropical forest have diverged. The difference is largely driven by carbon losses from tree mortality, with no detectable multi-decadal trend in Africa and a long-term increase in Amazonia. Both continents show increasing tree growth, consistent with the expected net effect of rising atmospheric CO2 and air temperature7-9. Despite the past stability of the African carbon sink, our data suggest a post-2010 increase in carbon losses, delayed compared to Amazonia, indicating asynchronous carbon sink saturation on the two continents. A statistical model including CO2, temperature, drought and forest dynamics accounts for the observed trends and indicates a long-term future decline in the African sink, while the Amazonian sink continues to rapidly weaken. Overall, the uptake of carbon into Earth’s intact tropical forests peaked in the 1990s. Given that the global terrestrial carbon sink is increasing in size, observations indicating greater recent carbon uptake into the Northern hemisphere landmass10 reinforce our conclusion that the intact tropical forest carbon sink has already saturated. This tropical forest sink saturation and ongoing decline has consequences for policies to stabilise Earth’s climate.
U2 - 10.1038/s41586-020-2035-0
DO - 10.1038/s41586-020-2035-0
M3 - Article
C2 - 32132693
VL - 579
SP - 80
EP - 87
JO - Nature
JF - Nature
SN - 1476-4687
IS - 7797
ER -