Data-Driven Erbium-doped Fiber Amplifier Gain Modeling Using Gaussian Process Regression

Allbwn ymchwil: Cyfraniad at gyfnodolynErthygladolygiad gan gymheiriaid

Fersiynau electronig

Dogfennau

Dangosydd eitem ddigidol (DOI)

We propose a data-driven erbium-doped fiber amplifier (EDFA) gain model utilizing Gaussian process regression (GPR). An additive Laplacian and radial-basis function kernel is proposed for the GPR and was found to outperform deep neural network (DNN) methods while additionally providing prediction uncertainty. Performance is measured using mean absolute error (MAE) averaged across five different EDFAs with three manufacturers. The GPR achieves an MAE of 0.1 dB using 30 training samples in contrast to the DNN that achieves an MAE of 0.25 dB using 3000 training samples. Additionally, we demonstrate that active learning can be used to improve
robustness and repeatability of convergence.
Iaith wreiddiolSaesneg
Tudalennau (o-i)1097-1100
Nifer y tudalennau4
CyfnodolynIEEE Photonics Technology Letters
Cyfrol36
Rhif y cyfnodolyn18
Dyddiad ar-lein cynnar9 Awst 2024
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 15 Medi 2024

Cyfanswm lawlrlwytho

Nid oes data ar gael
Gweld graff cysylltiadau