EDC-Mediated Oligonucleotide Immobilization on a Long Period Grating Optical Biosensor
Allbwn ymchwil: Cyfraniad at gyfnodolyn › Erthygl › adolygiad gan gymheiriaid
StandardStandard
Yn: Journal of Biosensors and Bioelectronics, Cyfrol 6, Rhif 2, 28.06.2015.
Allbwn ymchwil: Cyfraniad at gyfnodolyn › Erthygl › adolygiad gan gymheiriaid
HarvardHarvard
APA
CBE
MLA
VancouverVancouver
Author
RIS
TY - JOUR
T1 - EDC-Mediated Oligonucleotide Immobilization on a Long Period Grating Optical Biosensor
AU - Chen, X.
AU - Liu, C.
AU - Hughes, M.
AU - Nage, D.A.
AU - Hine, A.V.
AU - Zhang, L.
PY - 2015/6/28
Y1 - 2015/6/28
N2 - e present the development and simplification of label-free fiber optic biosensors based on immobilization of oligonucleotides on dual-peak long period gratings (dLPGs). This improvement is the result of a simplification of biofunctionalization methodology. A one-step 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)-mediated reaction has been developed for the straightforward immobilization of unmodified oligonucleotides on the glass fiber surface along the grating region, leading to covalent attachment of a 5'-phosphorylated probe oligonucleotide to the amino-derivatized fiber grating surface. Immobilization is achieved via a 5'phosphate-specific linkage, leaving the remainder of the oligonucleotide accessible for binding reactions. The dLPG has been tested in different external media to demonstrate its inherent ultrahigh sensitivity to the surrounding-medium refractive index (RI) achieving 50-fold improvement in RI sensitivity over the previously-published LPG sensor in media with RI's relevant to biological assays. After functionalization, the dLPG biosensor was used to monitor the hybridization of complementary oligonucleotides showing a detectable oligonucleotide concentration of 4 nM. The proposed one-step EDC reaction approach can be further extended to develop fiber optic biosensors for disease analysis and medical diagnosis with the advances of label-free, real-time, multiplex, high sensitivity and specificity.
AB - e present the development and simplification of label-free fiber optic biosensors based on immobilization of oligonucleotides on dual-peak long period gratings (dLPGs). This improvement is the result of a simplification of biofunctionalization methodology. A one-step 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)-mediated reaction has been developed for the straightforward immobilization of unmodified oligonucleotides on the glass fiber surface along the grating region, leading to covalent attachment of a 5'-phosphorylated probe oligonucleotide to the amino-derivatized fiber grating surface. Immobilization is achieved via a 5'phosphate-specific linkage, leaving the remainder of the oligonucleotide accessible for binding reactions. The dLPG has been tested in different external media to demonstrate its inherent ultrahigh sensitivity to the surrounding-medium refractive index (RI) achieving 50-fold improvement in RI sensitivity over the previously-published LPG sensor in media with RI's relevant to biological assays. After functionalization, the dLPG biosensor was used to monitor the hybridization of complementary oligonucleotides showing a detectable oligonucleotide concentration of 4 nM. The proposed one-step EDC reaction approach can be further extended to develop fiber optic biosensors for disease analysis and medical diagnosis with the advances of label-free, real-time, multiplex, high sensitivity and specificity.
U2 - 10.4172/2155-6210.1000173
DO - 10.4172/2155-6210.1000173
M3 - Article
VL - 6
JO - Journal of Biosensors and Bioelectronics
JF - Journal of Biosensors and Bioelectronics
SN - 2155-6210
IS - 2
ER -