Predicting the spectral information of future land cover using machine learning
Allbwn ymchwil: Cyfraniad at gyfnodolyn › Erthygl › adolygiad gan gymheiriaid
StandardStandard
Predicting the spectral information of future land cover using machine learning. / Patil, Sopan; Gu, Yuting; Dias, A. et al.
Yn: International Journal of Remote Sensing, Cyfrol 38, 2017, t. 5592-5607.
Yn: International Journal of Remote Sensing, Cyfrol 38, 2017, t. 5592-5607.
Allbwn ymchwil: Cyfraniad at gyfnodolyn › Erthygl › adolygiad gan gymheiriaid
HarvardHarvard
Patil, S, Gu, Y, Dias, A, Steiglitz, M & Turk, G 2017, 'Predicting the spectral information of future land cover using machine learning', International Journal of Remote Sensing, cyfrol. 38, tt. 5592-5607. https://doi.org/10.1080/01431161.2017.1343512
APA
Patil, S., Gu, Y., Dias, A., Steiglitz, M., & Turk, G. (2017). Predicting the spectral information of future land cover using machine learning. International Journal of Remote Sensing, 38, 5592-5607. https://doi.org/10.1080/01431161.2017.1343512
CBE
Patil S, Gu Y, Dias A, Steiglitz M, Turk G. 2017. Predicting the spectral information of future land cover using machine learning. International Journal of Remote Sensing. 38:5592-5607. https://doi.org/10.1080/01431161.2017.1343512
MLA
Patil, Sopan et al. "Predicting the spectral information of future land cover using machine learning". International Journal of Remote Sensing. 2017, 38. 5592-5607. https://doi.org/10.1080/01431161.2017.1343512
VancouverVancouver
Patil S, Gu Y, Dias A, Steiglitz M, Turk G. Predicting the spectral information of future land cover using machine learning. International Journal of Remote Sensing. 2017;38:5592-5607. Epub 2017 Meh 22. doi: 10.1080/01431161.2017.1343512
Author
RIS
TY - JOUR
T1 - Predicting the spectral information of future land cover using machine learning
AU - Patil, Sopan
AU - Gu, Yuting
AU - Dias, A.
AU - Steiglitz, Marc
AU - Turk, Greg
PY - 2017
Y1 - 2017
U2 - 10.1080/01431161.2017.1343512
DO - 10.1080/01431161.2017.1343512
M3 - Article
VL - 38
SP - 5592
EP - 5607
JO - International Journal of Remote Sensing
JF - International Journal of Remote Sensing
SN - 0143-1161
ER -