Roots and rhizospheric soil microbial community responses to tree species mixtures.
Allbwn ymchwil: Cyfraniad at gyfnodolyn › Erthygl › adolygiad gan gymheiriaid
StandardStandard
Yn: Applied Soil Ecology, Cyfrol 176, 104509, 08.2022.
Allbwn ymchwil: Cyfraniad at gyfnodolyn › Erthygl › adolygiad gan gymheiriaid
HarvardHarvard
APA
CBE
MLA
VancouverVancouver
Author
RIS
TY - JOUR
T1 - Roots and rhizospheric soil microbial community responses to tree species mixtures.
AU - Ribbons, Relena
AU - Del Toro, Israel
AU - Smith, Andy
AU - Healey, John
AU - Vesterdal, Lars
AU - McDonald, Morag
N1 - R.R.R. was funded by the Education, Audiovisual and Culture Ex- ecutive Agency (EACEA) of the European Commission under Erasmus Mundus Action 1 through individual Doctoral fellowships as part of the Erasmus Mundus Joint Doctoral Programme “Forests and Nature for Society” (FONASO). The authors acknowledge the financial support provided by the Welsh Government and Higher Education Funding Council for Wales through the Sˆer Cymru National Research Network for Low Carbon, Energy and Environment.
PY - 2022/8
Y1 - 2022/8
N2 - Below-ground processes are crucial in determining the effects of plants on ecosystem function. The root-soil interface is a highly active zone due to root exudation and nutrient uptake. However, its role in determining effectsof tree species and their interactions on the soil microbial community, ecosystem function and above-ground growth is less well known. We compared the effects of tree species monocultures and their mixture on rhizospheric microbial communities, specific functional genetic markers associated with processes in the nitrogen (N) cycle, and above-ground and below-ground growth and nutrient allocation. Two pairs of tree species were grown: Pseudotsuga menziesii and Alnus rubra; Acer pseudoplatanus and Quercus robur. Tree establishment altered soil microbial composition, but after 26 months differences amongst tree species and effects of species mixture were minor, suggesting functional redundancy in microbial communities. A greater abundance of fungi, bacteria, and specifically ammonia oxidising and denitrifying bacteria in the rhizospheric soil of the N-fixing A. rubra was the most notable trend. Mixing A. rubra with P. menziesii did produce overyielding: trees grown in mixture attained a two-fold greater (Relative Yield Total 2.03±0.52) above-ground biomass than in a mixture predicted from trees grown in monoculture. We did not observe strong trends in overyielding for A. psuedoplatanus and Q. robur. Inclusion of the Nfixing species A. rubra in admixture with P. menziesii promoted N cycling, and decreased the C:N ratios of leaf, branch, and root tissues but not soil C:N ratio for P. menziesii. Given the observed overyielding in the A. rubra with P. menziesii mixtures, we explored potential mechanistic links between functional genetic markers for nitrificationand ammonification, however we found no statistically significant effects attributable to these genetic markers. We found root area index was significantly lower in A. rubra monocultures than in admixture with P. menziesii. For both P. menziesii and A. rubra, the number of root tips was lower in mixture than monoculture, indicating physical partitioning of soil space as a result of growing in mixture. We documented additive and synergistic effects of tree species identity on above and belowground productivity, and rhizospheric microbial community development in these four tree species.
AB - Below-ground processes are crucial in determining the effects of plants on ecosystem function. The root-soil interface is a highly active zone due to root exudation and nutrient uptake. However, its role in determining effectsof tree species and their interactions on the soil microbial community, ecosystem function and above-ground growth is less well known. We compared the effects of tree species monocultures and their mixture on rhizospheric microbial communities, specific functional genetic markers associated with processes in the nitrogen (N) cycle, and above-ground and below-ground growth and nutrient allocation. Two pairs of tree species were grown: Pseudotsuga menziesii and Alnus rubra; Acer pseudoplatanus and Quercus robur. Tree establishment altered soil microbial composition, but after 26 months differences amongst tree species and effects of species mixture were minor, suggesting functional redundancy in microbial communities. A greater abundance of fungi, bacteria, and specifically ammonia oxidising and denitrifying bacteria in the rhizospheric soil of the N-fixing A. rubra was the most notable trend. Mixing A. rubra with P. menziesii did produce overyielding: trees grown in mixture attained a two-fold greater (Relative Yield Total 2.03±0.52) above-ground biomass than in a mixture predicted from trees grown in monoculture. We did not observe strong trends in overyielding for A. psuedoplatanus and Q. robur. Inclusion of the Nfixing species A. rubra in admixture with P. menziesii promoted N cycling, and decreased the C:N ratios of leaf, branch, and root tissues but not soil C:N ratio for P. menziesii. Given the observed overyielding in the A. rubra with P. menziesii mixtures, we explored potential mechanistic links between functional genetic markers for nitrificationand ammonification, however we found no statistically significant effects attributable to these genetic markers. We found root area index was significantly lower in A. rubra monocultures than in admixture with P. menziesii. For both P. menziesii and A. rubra, the number of root tips was lower in mixture than monoculture, indicating physical partitioning of soil space as a result of growing in mixture. We documented additive and synergistic effects of tree species identity on above and belowground productivity, and rhizospheric microbial community development in these four tree species.
U2 - 10.1016/j.apsoil.2022.104509
DO - 10.1016/j.apsoil.2022.104509
M3 - Article
VL - 176
JO - Applied Soil Ecology
JF - Applied Soil Ecology
SN - 0929-1393
M1 - 104509
ER -