Professor Ruben Valbuena

Honorary Professor

Affiliations

Contact info

Room: G19, Thoday Building, School of Natural Sciences, Bangor University

Email: r.valbuena@bangor.ac.uk

Phone: +44 (0)1248 38 2445

Web: GoogleScholar, ResearchGate, Publons

My work consists in the use of big data to answer ecological questions at the ecosystem community and landscape levels. I use remote sensing data, LIDAR in particular, due to its great potential for analysing structural and morphological traits of ecosystems, and thus estimate carbon stocks, ecosystem services, or habitat suitability for species. During the last seven years, I have pioneer adaptations of methods based on Lorenz curves to forest science and remote sensing; work awarded with the International Union of Forest Researchers (IUFRO) 2019’s Outstanding Doctoral Research Award.

  1. Gini coefficient predictions from airborne lidar remote sensing display the effect of management intensity on forest structure

    Valbuena, R., Eerikäinen, K., Packalen, P. & Maltamo, M., Jan 2016, In: Ecological Indicators. 60, p. 574-585 12 p.

    Research output: Contribution to journalArticlepeer-review

  2. Published

    Standardizing Ecosystem Morphological Traits from 3D Information Sources

    Valbuena, R., O'Connor, B., Zellweger, F., Simonson, W., Vihervaara, P., Maltamo, M., Silva, C. A., Almeida, D. R. A., Danks, F., Morsdorf, F., Chirici, G., Lucas, R., Coomes, D. A. & Coops, N. C., 1 Aug 2020, In: Trends in Ecology and Evolution. 35, 8, p. 656-667

    Research output: Contribution to journalReview articlepeer-review

  3. Partial least squares for discriminating variance components in global navigation satellite systems accuracy obtained under scots pine canopies

    Valbuena, R., Mauro, F., Rodríguez-Solano, R. & Manzanera, J. A., 2012, In: Forest Science. 58, 2, p. 139-153 15 p.

    Research output: Contribution to journalArticlepeer-review

  4. Accuracy and precision of GPS receivers under forest canopies in a mountainous environment [Exactitud y precisiońn de receptores GPS bajo cubiertas forestales en ambientes montañosos]

    Valbuena, R., Mauro, F., Rodriguez-Solano, R. & Manzanera, J. A., 2010, In: Spanish Journal of Agricultural Research. 8, 4, p. 1047-1057 11 p.

    Research output: Contribution to journalArticlepeer-review

  5. Enhancing of accuracy assessment for forest above-ground biomass estimates obtained from remote sensing via hypothesis testing and overfitting evaluation

    Valbuena, R., Hernando, A., Manzanera, J. A., Gorgens, E. B., Almeida, D. R. A., Mauro, F., Garcia-Abril, A. & Coomes, D. A., 24 Dec 2017, In: Ecological Modelling. 366, p. 15-26

    Research output: Contribution to journalArticlepeer-review

  6. Sensitivity of Above-Ground Biomass Estimates to Height-Diameter Modelling in Mixed-Species West African Woodlands

    Valbuena, R., Heiskanen, J., Aynekulu, E., Pitkänen, S. & Packalen, P., 1 Jul 2016, In: PLoS ONE. 11, 7, p. e0158198

    Research output: Contribution to journalArticlepeer-review

  7. Classification of multilayered forest development classes from low-density national airborne lidar datasets

    Valbuena, R., Maltamo, M. & Packalen, P., Aug 2016, In: Forestry. 89, 4, p. 392-401 10 p.

    Research output: Contribution to journalArticlepeer-review

  8. Published

    Evaluating observed versus predicted forest biomass: R-squared, index of agreement or maximal information coefficient?

    Valbuena, R., Hernando, A., Manzanera, J. A., Gorgens, E. B., Alves de Almeida, D. R., Silva, C. A. & Garcia-Abril, A., 31 May 2019, In: European Journal of Remote Sensing. 52, 1, p. 345-358 14 p.

    Research output: Contribution to journalArticlepeer-review

  9. Canonical correlation analysis for interpreting airborne laser scanning metrics along the lorenz curve of tree size inequality

    Valbuena, R., Packalen, P., Tokola, T. & Maltamo, M., 2014, In: Baltic Forestry. 20, 2, p. 326-332 7 p.

    Research output: Contribution to journalArticlepeer-review

  10. Within-species benefits of back-projecting airborne laser scanner and multispectral sensors in monospecific pinus sylvestris forests

    Valbuena, R., De-Blas, A., Martín-Fernández, S., Maltamo, M., Nabuurs, G.-J. & Manzanera, J. A., 2013, In: European Journal of Remote Sensing. 46, 1, p. 491-509 19 p.

    Research output: Contribution to journalArticlepeer-review

  11. Characterizing forest structural types and shelterwood dynamics from Lorenz-based indicators predicted by airborne laser scanning

    Valbuena, R., Packalen, P., Mehtätalo, L., García-Abril, A. & Maltamo, M., 2013, In: Canadian Journal of Forest Research. 43, 11, p. 1063-1074 12 p.

    Research output: Contribution to journalArticlepeer-review

  12. Key structural features of Boreal forests may be detected directly using L-moments from airborne lidar data

    Valbuena, R., Maltamo, M., Mehtatalo, L. & Packalen, P., 1 Jun 2017, In: Remote Sensing of Environment. 194, p. 437-446

    Research output: Contribution to journalArticlepeer-review

  13. Mapping wood production in European forests

    Verkerk, P. J., Levers, C., Kuemmerle, T., Lindner, M., Valbuena, R., Verburg, P. H. & Zudin, S., 1 Dec 2015, In: Forest Ecology and Management. 357, p. 228-238

    Research output: Contribution to journalArticlepeer-review

  14. How to integrate remotely sensed data and biodiversity for ecosystem assessments at landscape scale

    Vihervaara, P., Mononen, L., Auvinen, A.-P., Virkkala, R., Lu, Y., Pippuri, I., Packalen, P., Valbuena, R. & Valkama, J., Mar 2015, In: Landscape Ecology. 30, 3, p. 501-516

    Research output: Contribution to journalArticlepeer-review

  15. Published

    Tighten the Bolts and Nuts on GPP Estimations from Sites to the Globe: An Assessment of Remote Sensing Based LUE Models and Supporting Data Fields

    Wang, Z., Liu, S., Wang, Y.-P., Valbuena, R., Wu, Y., Kutia, M., Zheng, Y., Lu, W., Zhu, Y., Zhao, M., Peng, X., Gao, H., Feng, S. & Shi, Y., 6 Jan 2021, In: Remote Sensing. 13, 2, 168.

    Research output: Contribution to journalArticlepeer-review

  16. Published

    Impacts of selective logging on Amazon forest canopy structure and biomass with a LiDAR and photogrammetric survey sequence

    d'Oliveira, M. V. N., Figueiredo, E. O., Almeida, D. R. A. D., Oliveira, L. C., Silva, C. A., Nelson, B. W., Cunha, R. M. D., Papa, D. D. A., Stark, S. C. & Valbuena, R., 15 Nov 2021, In: Forest Ecology and Management. 500, 119648.

    Research output: Contribution to journalArticlepeer-review

  17. Optimizing the remote detection of tropical rainforest structure with airborne lidar: Leaf area profile sensitivity to pulse density and spatial sampling

    de Almeida, D. R. A., Stark, S. C., Shao, G., Schietti, J., Nelson, B. W., Silva, C. A., Gorgens, E. B., Valbuena, R., Papa, D. D. A. & Brancalion, P. H. S., 7 Jan 2019, In: Remote Sensing. 11, 1, 92.

    Research output: Contribution to journalArticlepeer-review

  18. Published

    A new era in forest restoration monitoring

    de Almeida, D. R. A., Stark, S. C., Valbuena, R., Broadbent, E. N., Silva, T. S. F., de Resende, A. F., Ferreira, M. P., Cardil, A., Silva, C. A., Amazonas, N., Zambrano, A. M. A. & Brancalion, P. H. S., 30 Jan 2020, In: Restoration Ecology. 28, 1, p. 8-11 4 p.

    Research output: Contribution to journalArticlepeer-review

Previous 1 2 Next