• Laura Duncanson
  • James R. Kellner
  • John Armston
  • Ralph Dubayah
  • David M. Minor
  • Steven Hancock
  • Sean P. Healey
  • Paul L. Patterson
  • Svetlana Saarela
  • Suzanne Marselis
  • Carlos E. Silva
  • Jamis Bruening
  • Scott J. Goetz
  • Hao Tang
  • Michelle Hofton
  • Bryan Blair
  • Scott Luthcke
  • Lola Fatoyinbo
  • Katharine Abernethy
  • Alfonso Alonso
  • Hans-Erik Andersen
  • Paul Aplin
  • Timothy R. Baker
  • Nicolas Barbier
  • Jean Francois Bastin
  • Peter Biber
  • Pascal Boeckx
  • Jan Bogaert
  • Luigi Boschetti
  • Peter Brehm Boucher
  • Doreen S. Boyd
  • David F.R.P. Burslem
  • Sofia Calvo-Rodriguez
  • Jérôme Chave
  • Robin L. Chazdon
  • David B. Clark
  • Deborah A. Clark
  • Warren B. Cohen
  • David A. Coomes
  • Piermaria Corona
  • K.C. Cushman
  • Mark E.J. Cutler
  • James W. Dalling
  • Michele Dalponte
  • Jonathan Dash
  • Sergio de-Miguel
  • Songqiu Deng
  • Peter Woods Ellis
  • Barend Erasmus
  • Patrick A. Fekety
  • Alfredo Fernandez-Landa
  • Antonio Ferraz
  • Rico Fischer
  • Adrian G. Fisher
  • Antonio García-Abril
  • Terje Gobakken
  • Jorg M. Hacker
  • Marco Heurich
  • Ross A. Hill
  • Chris Hopkinson
  • Huabing Huang
  • Stephen P. Hubbell
  • Andrew T. Hudak
  • Andreas Huth
  • Benedikt Imbach
  • Kathryn J. Jeffery
  • Masato Katoh
  • Elizabeth Kearsley
  • David Kenfack
  • Natascha Kljun
  • Nikolai Knapp
  • Kamil Král
  • Martin Krůček
  • Nicolas Labrière
  • Simon L. Lewis
  • Marcos Longo
  • Richard M. Lucas
  • Russell Main
  • Jose A. Manzanera
  • Rodolfo Vásquez Martínez
  • Renaud Mathieu
  • Herve Memiaghe
  • Victoria Meyer
  • Abel Monteagudo Mendoza
  • Alessandra Monerris
  • Paul Montesano
  • Felix Morsdorf
  • Erik Næsset
  • Laven Naidoo
  • Reuben Nilus
  • Michael O’Brien
  • David A. Orwig
  • Konstantinos Papathanassiou
  • Geoffrey Parker
  • Christopher Philipson
  • Oliver L. Phillips
  • Jan Pisek
  • John R. Poulsen
  • Hans Pretzsch
  • Christoph Rüdiger
  • Sassan Saatchi
  • Arturo Sanchez-Azofeifa
  • Nuria Sanchez-Lopez
  • Robert Scholes
  • Carlos A. Silva
  • Marc Simard
  • Andrew Skidmore
  • Krzysztof Stereńczak
  • Mihai Tanase
  • Chiara Torresan
  • Ruben Valbuena
  • Hans Verbeeck
  • Tomas Vrska
  • Konrad Wessels
  • Joanne C. White
  • Lee J.T. White
  • Eliakimu Zahabu
  • Carlo Zgraggen
NASA’s Global Ecosystem Dynamics Investigation (GEDI) is collecting spaceborne full waveform lidar data with a primary science goal of producing accurate estimates of forest aboveground biomass density (AGBD). This paper presents the development of the models used to create GEDI’s footprint-level (~25 m) AGBD (GEDI04_A) product, including a description of the datasets used and the procedure for final model selection. The data used to fit our models are from a compilation of globally distributed spatially and temporally coincident field and airborne lidar datasets, whereby we simulated GEDI-like waveforms from airborne lidar to build a calibration database. We used this database to expand the geographic extent of past waveform lidar studies, and divided the globe into four broad strata by Plant Functional Type (PFT) and six geographic regions. GEDI’s waveform-to-biomass models take the form of parametric Ordinary Least Squares (OLS) models with simulated Relative Height (RH) metrics as predictor variables. From an exhaustive set of candidate models, we selected the best input predictor variables, and data transformations for each geographic stratum in the GEDI domain to produce a set of comprehensive predictive footprint-level models. We found that model selection frequently favored combinations of RH metrics at the 98th, 90th, 50th, and 10th height above ground-level percentiles (RH98, RH90, RH50, and RH10, respectively), but that inclusion of lower RH metrics (e.g. RH10) did not markedly improve model performance. Second, forced inclusion of RH98 in all models was important and did not degrade model performance, and the best performing models were parsimonious, typically having only 1-3 predictors. Third, stratification by geographic domain (PFT, geographic region) improved model performance in comparison to global models without stratification. Fourth, for the vast majority of strata, the best performing models were fit using square root transformation of field AGBD and/or height metrics. There was considerable variability in model performance across geographic strata, and areas with sparse training data and/or high AGBD values had the poorest performance. These models are used to produce global predictions of AGBD, but will be improved in the future as more and better training data become available.

Keywords

  • LiDAR, GEDI, Waveform, Forest, Aboveground biomass, Modeling
Original languageEnglish
JournalRemote Sensing of Environment
Volume270
Early online date7 Jan 2022
DOIs
Publication statusPublished - 2022
View graph of relations